Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Experimental flow and performance investigations of cavity purge flows in a high pressure turbine stage
KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
KTH, School of Industrial Engineering and Management (ITM), Energy Technology.ORCID iD: 0000-0002-1033-9601
2015 (English)In: 11th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, ETC 2015, European Conference on Turbomachinery (ETC) , 2015Conference paper, Published paper (Refereed)
Abstract [en]

A high pressure turbine stage has been investigated from the aspect of flow and performance impact associated with cavity purge. Performance is referred to as the operating parameters of the turbine, mainly based on the continuous output torque monitoring. The flow parameters were studied through measurements featuring temperature and pressure throughout the flow path, as well as in the cavity. Purge and main flow velocities were quantified in the vane exit section, and degree of sealing based on purge-amount correlations and pressure readings. Results were related to turbine efficiency based on a simple correlation, and also entropy generation. Change of operating point was found to have a significant effect on degree of sealing, while the change of efficiency was found to be linear with respect to relative purge rate and independent of operating point.

Place, publisher, year, edition, pages
European Conference on Turbomachinery (ETC) , 2015.
Keyword [en]
Entropy, Fluid dynamics, Gas turbines, Thermodynamics, Turbomachinery, Entropy generation, High pressure turbine stage, Operating parameters, Operating points, Performance impact, Pressure reading, Temperature and pressures, Turbine efficiency, Turbines
National Category
Fluid Mechanics and Acoustics
Identifiers
URN: urn:nbn:se:kth:diva-174784ISI: 000380606100084Scopus ID: 2-s2.0-84983133986ISBN: 9780000000002 (print)OAI: oai:DiVA.org:kth-174784DiVA: diva2:878086
Conference
11th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, ETC 2015, 23 March 2015 through 27 March 2015
Funder
Swedish Energy Agency
Note

QC 20151208

Available from: 2015-12-08 Created: 2015-10-07 Last updated: 2017-11-29Bibliographically approved
In thesis
1. Cavity Purge Flows in High Pressure Turbines
Open this publication in new window or tab >>Cavity Purge Flows in High Pressure Turbines
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Turbomachinery forms the principal prime mover in the energy and aviation industries. Due to its size, improvements to this fleet of machines have the potential of significant impact on global emissions. Due to high gas temperatures in stationary gas turbines and jet engines, areas of flow mixing and cooling are identified to benefit from continued research. Here, sensitive areas are cooled through cold air injection, but with the cost of power to compress the coolant to appropriate pressure. Further, the injection itself reduces output due to mixing losses.A turbine testing facility is center to the study, allowing measurement of cooling impact on a rotating low degree of reaction high pressure axial turbine. General performance, flow details, and cooling performance is quantified by output torque, pneumatic probes, and gas concentration measurement respectively. The methodology of simultaneously investigating the beneficial cooling and the detrimental mixing is aimed at the cavity purge flow, used to purge the wheelspace upstream of the rotor from hot main flow gas.Results show the tradeoff between turbine efficiency and cooling performance, with an efficiency penalty of 1.2 %-points for each percentage point of massflow ratio of purge. The simultaneous cooling effectiveness increase is about 40 %-points, and local impact on flow parameters downstream of the rotor is of the order of 2° altered turning and a Mach number delta of 0.01. It has also been showed that flow bypassing the rotor blading may be beneficial for cooling downstream.The results may be used to design turbines with less cooling. Detrimental effects of the remaining cooling may be minimized with the flow field knowledge. Stage performance is then optimized aerodynamically, mixing losses are reduced, and the cycle output is maximized due to the reduced compression work. The combination may be used to provide a significant benefit to the turbomachinery industry and reduced associated emissions.

Abstract [sv]

Strömningsmaskinen i dess olika variationer bildar den främsta drivmotorn inom kraftproduktion och flygindustrin. En förbättring av denna väldiga maskinpark har potentialen till betydande inverkan på globala utsläpp. Områden som identifierats kunna dra nytta av vidare forskning är ombandningsprocesser och kylning. Dessa områden är inneboende i stationära gasturbiner och jetmotorer på grund av de heta gaser som används. Kylning uppnås genom injektion av kall luft i kritiska områden och försäkrar därmed säker drift. Kylningen kommer dock till en kostnad. På cykelnivå krävs arbete för att komprimera flödet till korrekt tryck. Dessutom medför injektionen i sig förluster som kan härledas till omblandningsprocessen.

Syftet med detta arbete är att samtidigt undersöka de fördelaktiga kylegenskaperna som nackdelarna med inblandning för att på så sätt bestämma den uppoffring som måste göras för en viss kylning. Alla förbättringar tros dock inte behöva föregås av en uppoffring. Om påverkan av kylningen på huvudflödet är välförstådd kan designen justeras för att ta hänsyn till denna förändring och minimera inverkan. Denna metodologi riktar sig mot ett särskilt kylflöde, kavitetsrensningsflödet, som har till uppgift att avlägsna het luft från den kavitet som uppkommer uppströms rotorskivan i ett högtrycksturbinsteg.

Studien kretsar kring en turbinprovanläggning som möjliggör detaljerade strömningsmätningar i ett roterande turbinsteg under inverkan av kavitetsrensningsflödet. Högtrycksturbinsteget som används för undersökningen är av låg reaktionsgrad. Här kvantifieras generell prestanda genom mätning av vridmomentet på utgående axel. Flödesfältet kvantifieras med pneumatiska sonder, och kylningsprestandan predikteras genom gaskoncentrationsmätningar.

Resultaten visar avvägningen och sambandet mellan turbinverkningsgrad och kylning i kavitet samt huvudkanal. Flödet mäts i detalj, och de effekter som kan förväntas uppkomma då ett turbinsteg utsätts för en viss mängd av kylflödet kvantifieras. De kvantitativa resultaten för det undersökta steget visar på en förlust i verkningsgrad på 1.2 procentenheter för varje procentenhet av kavitetsrensningsflödet i termer om massflödesförhållande. Samtidigt ses kyleffektiviteten öka med 40 procentenheter. Den lokala inverkan på flödesfältet nedströms rotorn för det undersökta steget är 2° i flödesvinken och en ändring på 0.01 i Machnummer för varje procentenhet av kylflödet. Dessa ändringar ses i form av ökad omlänkning och reducerad hastighet nära hubben, och vice versa omkring halva spännvidden. Inverkan av aktuell driftpunkt understryks genom arbetet. Det har också visats att ett läckage som kringgår rotorbladen i vissa kan fall ge fördelaktig kylning i områden nedströms.

Denna kombinerade kunskap kan användas för design av turbiner med så låg mängd kylning som möjligt samtidigt som säker drift bibehålls. Den negativa inverkan av den återstående kylningen kan minimeras genom kunskapen om hur flödesfältet påverkas. Genom detta optimeras stegverkningsgraden aerodynamiskt, omblandningsförluster minimeras, och cykeleffekten maximeras genom det minskade kompressionsarbetet till följd av de reducerade kylmängderna. Kombinationen kan ge en betydande förbättring för turbinindustrin och minskade utsläpp.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2017. 62 p.
Series
TRITA-KRV, Report 17/07
Keyword
turbomachinery; axial turbine; cavity purge; purge flow; wheelspace; rim seal; spanwise transport; radial transport; effectiveness; cooling; efficiency, strömningsmaskiner; axialturbin; kavitetsrensningsflöde; kavitetsflöde; tätkant; spännviddsvis transport; radiell transport; effektivitet; kylning; verkningsgrad
National Category
Aerospace Engineering Energy Engineering Fluid Mechanics and Acoustics
Research subject
Energy Technology
Identifiers
urn:nbn:se:kth:diva-218468 (URN)978-91-7729-626-3 (ISBN)
Public defence
2018-01-08, Kollegiesalen, Brinellvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Energy Agency, P30419-2
Note

QC 20171129

Available from: 2017-11-29 Created: 2017-11-28 Last updated: 2017-11-30Bibliographically approved

Open Access in DiVA

fulltext(854 kB)70 downloads
File information
File name FULLTEXT01.pdfFile size 854 kBChecksum SHA-512
65bda6d82c6fcb3b6cd038e12c5fb8bff3d11c74f2bd1f5352cec032ed665ca441f6c05a0646d37af7b7d0b5f6f2122b0f2900c1eb017a1bc2410fc5e91a1eb8
Type fulltextMimetype application/pdf

Scopus

Authority records BETA

Fridh, Jens

Search in DiVA

By author/editor
Dahlqvist, JohanFridh, Jens
By organisation
Energy Technology
Fluid Mechanics and Acoustics

Search outside of DiVA

GoogleGoogle Scholar
Total: 70 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 407 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf