Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
In-plane fracture of paperboard.
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.).
2014 (English)Independent thesis Advanced level (degree of Master (One Year)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

In order to prevent the occurrence of cracks in paper packages, the in-plane mechanical behavior for the full paperboard needs to be investigated. Further, it is of importance to understand also the in-plane behavior of the plies that build up the paperboard. In order to characterize the crack growth behavior, a normalized stress-widening model was developed, based on the minimum fracture energy, according to Tryding (2014). The model depends on the tensile strength, _t, and the maximum slope after peak stress in short-span tensile tests, Nmax. In this Master's thesis, it was investigated if the normalized stress-widening model is a true master curve, which describes the crack growth in full paperboards, and in their plies, respectively. To verify if the model is a true master curve, six paperboards from three di_erent suppliers were investigated. From short-span tensile tests, the properties needed for the stress-widening model were obtained.

The results indicate that the normalized stress-widening model is a true master curve, which also is valid for unloading. Furthermore, a linear relation between _t and Nmax was obtained, which means that the model might be reduced to be dependent of the tensile strength, _t, and a constant that will be de_ned empirically by the linear relation between _t and Nmax. All three-ply boards were based on sandwich construction theory, which was supported by the results, were two paperboards, Paperboard A and Paperboard C had signi_cantly larger tensile strength, in comparison to their density, than Paperboard D and Paperboard E, which indicates that Paperboard A and Paperboard C have better material distribution than Paperboard D and Paperboard E.

From the thesis, it can be concluded that, by performing short-span tensile tests, it is possible to normalize the post-peak stress behavior for paperboards into a master curve. Since all paperboards that have been investigated follow the master curve, it can be concluded that the fracture behavior can be characterized by the three parameters that a_ect the model, i.e. the tensile strength, _t, the maximum slope after peak stress, Nmax, and the tensile sti_ness, E.

Place, publisher, year, edition, pages
2014. , 120 p.
National Category
Applied Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-178798OAI: oai:DiVA.org:kth-178798DiVA: diva2:878318
External cooperation
Tetra Pak
Subject / course
Solid Mechanics
Supervisors
Examiners
Available from: 2015-12-08 Created: 2015-12-08 Last updated: 2015-12-08Bibliographically approved

Open Access in DiVA

fulltext(8280 kB)130 downloads
File information
File name FULLTEXT01.pdfFile size 8280 kBChecksum SHA-512
0cf75d40976af61bc92f5e458529517a4d8dcc354b10c2a6566cfee4e9fc88356123eb2a207a598435cda14f60bc9def188c268db9a23938982bc85efb296a74
Type fulltextMimetype application/pdf

By organisation
Solid Mechanics (Dept.)
Applied Mechanics

Search outside of DiVA

GoogleGoogle Scholar
Total: 130 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 110 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf