Change search
ReferencesLink to record
Permanent link

Direct link
Distributed Algorithms for Content Allocation in Interconnected Content Distribution Networks
KTH, School of Electrical Engineering (EES), Communication Networks. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.ORCID iD: 0000-0001-7528-9994
KTH, School of Electrical Engineering (EES), Communication Networks. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.ORCID iD: 0000-0002-4876-0223
2015 (English)In: Proc. of IEEE Infocom, IEEE , 2015Conference paper (Refereed)
Abstract [en]

Internet service providers increasingly deploy internal CDNs with the objective of reducing the traffic on their transit links and to improve their customers' quality of experience. Once ISP managed CDNs (nCDNs) become commonplace, ISPs would likely provide common interfaces to interconnect their nCDNs for mutual benefit, as they do with peering today. In this paper we consider the problem of using distributed algorithms for computing a content allocation for nCDNs. We show that if every ISP aims to minimize its cost and bilateral payments are not allowed then it may be impossible to compute a content allocation. For the case of bilateral payments we propose two distributed algorithms, the aggregate value compensation (AC) and the object value compensation (OC) algorithms, which differ in terms of the level of parallelism they allow and in terms of the amount of information exchanged between nCDNs. We prove that the algorithms converge, and we propose a scheme to ensure ex-post individual rationality. Simulations performed on a real AS-level network topology and synthetic topologies show that the algorithms have geometric rate of convergence, and scale well with the graphs' density and the nCDN capacity.

Place, publisher, year, edition, pages
IEEE , 2015.
National Category
Computer Systems Communication Systems Telecommunications
URN: urn:nbn:se:kth:diva-179041DOI: 10.1109/INFOCOM.2015.7218624ISI: 000370720100264ScopusID: 2-s2.0-84954245249ISBN: 978-1-4799-8381-0OAI: diva2:880222
IEEE Infocom

QC 20151211

Available from: 2015-12-09 Created: 2015-12-09 Last updated: 2016-03-29Bibliographically approved
In thesis
1. Resource Allocation in Operator-owned Content Delivery Systems
Open this publication in new window or tab >>Resource Allocation in Operator-owned Content Delivery Systems
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Live and on-demand video content have become the most important source of network traffic in mobile and fixed networks in recent years. In order to be able to efficiently deliver the increasing amount of video content, network operators have started to deploy caches and operator-owned CDNs. These solutions do not only reduce the amount of transit traffic of the operators but they may also improve the customers' quality of experience, through bringing the video content closer to customers. Nevertheless, their efficiency is determined by the algorithms and protocols used to allocate resources, both in terms of storage and bandwidth. The work in this thesis proposes and analyses algorithms for the allocation of these two resources for operator-owned content management systems. In the first part of the thesis we consider a cache maintained by a single network operator. We formulate the problem of content caching in a mobile backhaul as an integer program and we show that there exists an efficient centralized solution to the problem. Due to the prohibitive space complexity of the centralized algorithm, we propose two distributed approximations based on local information on the content demands. We then consider the problem of managing cache bandwidth so as to minimize the traffic cost of content delivery and we propose various approximations of the optimal stationary policy. We then consider the interaction among content management systems maintained by different network operators. First, we consider the problem of selfish replication on a graph as a model of network operators that use their caches to prefetch popular content, and try to leverage their peering agreements so as to minimize the traffic through their transit providers. We design efficient distributed algorithms that compute a stable content allocation through selfish myopic updates of content allocations at different network operators. We show that, if the cost function is neighbor-specific, network operators need bilateral payments to compute a stable content allocation that is individually rational. We then consider the problem of coordinated caching in a network of autonomous systems engaged in content-level peering. We investigate whether interacting operator-owned caches need explicit coordination in order to reach a stable content allocation efficiently. Beyond the theoretical contributions made to the analysis of player-specific graphical congestion games and their generalizations, the results in thesis provide guidelines for the design of protocols for standalone and for interconnected operator-owned content management systems.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2016. vi, 44 p.
TRITA-EE, ISSN 1653-5146 ; 2015:120
National Category
Communication Systems
Research subject
Electrical Engineering; Electrical Engineering
urn:nbn:se:kth:diva-180060 (URN)978-91-7595-835-4 (ISBN)
Public defence
2016-01-29, F3, Lindstedtsvägen 26, KTH, Stockholm, 10:00 (English)

QC 20160107

Available from: 2016-01-07 Created: 2016-01-07 Last updated: 2016-01-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Pacifici, ValentinoDán, György
By organisation
Communication NetworksACCESS Linnaeus Centre
Computer SystemsCommunication SystemsTelecommunications

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 25 hits
ReferencesLink to record
Permanent link

Direct link