kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Frequency Domain Linearized Navier-Stokes Equations Methodology for Aero-Acoustic and Thermoacoustic Simulations
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Aeroacoustics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. SDB Aerodynamic.ORCID iD: 0000-0001-5757-3668
2015 (English)Licentiate thesis, monograph (Other academic)
Abstract [en]

The first part of the thesis focuses on developing a numerical methodology to simulate the acoustic properties of a hybrid liner consisting of a perforated plate, a porous layer and a Helmholtz cavity. Liners are always a standard way to reduce noise in today’s aeroengines, e.g. the fan noise can be reduced effectively through the installation of acoustic liners as wall treatments in the ducts. In order to optimize a liner in the design phase, an accurate and efficient prediction tool is of interests. Hence, a unified Linearized Navier-Stokes equations(LNSE) approach has been implemented in the thesis, combining the LNSE in frequency domain with the fluid equivalent model. The LNSE is applied in the vicinity of the perforated plate to simulate sound propagation including viscous damping effect, and the fluid equivalent model is used to model the sound propagation in the porous material including absorption.

The second part of the thesis focuses on the prediction of thermoacoustic instabilities. Thermoacoustic instabilities arise when positive coupling occurs between the flame and the acoustics in the feedback loop, i.e. the flame acts as an amplifier of the disturbances (acoustic or fluid) at a natural frequency of the combustion system. Once the thermoacoustic instabilities occur, it will lead to extremely high noise levels within a relatively narrow frequency range, resulting in a huge damage to the structure of the combustors. Hence, a solution must be found, which breaks the link between the combustion process and the structural acoustics. The numerical prediction of thermoacoustic instabilities in the thesis is performed by two different numerical methodologies. One solves the Helmholtz equation in combination of the flame n − tau model with the low Mach number assumptions, and the other solves the Linearized Navier-Stokes equations in frequency domain with mean flow. The result show that the mean flow has a significant effect on the thermoacoustic instabilities, which is non-negligible when the Mach number reaches to 0.15.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. , p. 69
Series
TRITA-AVE, ISSN 1651-7660 ; 2015:98
Keywords [en]
Linearized Navier-Stokes Equations, frequency domain, fluid equivalent model, hybrid liner, thermoacoustic instabilities, Rijke-tube
National Category
Mechanical Engineering
Research subject
Engineering Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-179677ISBN: 978-91-7595-800-2 (print)OAI: oai:DiVA.org:kth-179677DiVA, id: diva2:885566
Presentation
2015-12-15, D2, Lindstedtsvägen 5, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Projects
TANGO
Funder
EU, FP7, Seventh Framework Programme, 26766
Note

QC 20151221

Available from: 2015-12-21 Created: 2015-12-18 Last updated: 2022-06-23Bibliographically approved

Open Access in DiVA

Thesis(2591 kB)1691 downloads
File information
File name FULLTEXT01.pdfFile size 2591 kBChecksum SHA-512
6b1f485e0490f939a26bd57fb1d2423f8ecce0d8f2c531ecd530969d54afac1cb601a1af2f2630092a7a5694ffc1163d52e606faf6a53953bbab2cdfb3b7f720
Type fulltextMimetype application/pdf

Authority records

Na, Wei

Search in DiVA

By author/editor
Na, Wei
By organisation
AeroacousticsLinné Flow Center, FLOW
Mechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 1693 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 912 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf