Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Sensorimotor Approach for Self-Learning of Hand-Eye Coordination
KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.ORCID iD: 0000-0001-6738-9872
KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.ORCID iD: 0000-0002-4266-6746
KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.ORCID iD: 0000-0003-0579-3372
2015 (English)In: IEEE/RSJ International Conference onIntelligent Robots and Systems, Hamburg, September 28 - October 02, 2015, IEEE conference proceedings, 2015, p. 4969-4975Conference paper, Published paper (Refereed)
Abstract [en]

This paper presents a sensorimotor contingencies (SMC) based method to fully autonomously learn to perform hand-eye coordination. We divide the task into two visuomotor subtasks, visual fixation and reaching, and implement these on a PR2 robot assuming no prior information on its kinematic model. Our contributions are three-fold: i) grounding a robot in the environment by exploiting SMCs in the action planning system, which eliminates the need for prior knowledge of the kinematic or dynamic models of the robot; ii) using a forward model to search for proper actions to solve the task by minimizing a cost function, instead of training a separate inverse model, to speed up training; iii) encoding 3D spatial positions of a target object based on the robot’s joint positions, thus avoiding calibration with respect to an external coordinate system. The method is capable of learning the task of hand-eye coordination from scratch by less than 20 sensory-motor pairs that are iteratively generated at real-time speed. In order to examine the robustness of the method while dealing with nonlinear image distortions, we apply a so-called retinal mapping image deformation to the input images. Experimental results show the successfulness of the method even under considerable image deformations.

Place, publisher, year, edition, pages
IEEE conference proceedings, 2015. p. 4969-4975
Series
IEEE International Conference on Intelligent Robots and Systems, ISSN 2153-0858
Keyword [en]
Reactive and Sensor-Based Planning, Robot Learning, Visual Servoing
National Category
Computer Vision and Robotics (Autonomous Systems)
Research subject
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-179834DOI: 10.1109/IROS.2015.7354076ISI: 000371885405012Scopus ID: 2-s2.0-84958153652ISBN: 9781479999941 (print)OAI: oai:DiVA.org:kth-179834DiVA, id: diva2:889976
Conference
Intelligent Robots and Systems (IROS),Hamburg, September 28 - October 02, 2015
Projects
eSMCs
Note

Qc 20160212

Available from: 2015-12-29 Created: 2015-12-29 Last updated: 2018-05-21Bibliographically approved
In thesis
1. Sensorimotor Robot Policy Training using Reinforcement Learning
Open this publication in new window or tab >>Sensorimotor Robot Policy Training using Reinforcement Learning
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Robots are becoming more ubiquitous in our society and taking over many tasks that were previously considered as human hallmarks. Many of these tasks, e.g., autonomously driving a car, collaborating with humans in dynamic and changing working conditions and performing household chores, require human-level intelligence to perceive the world and to act appropriately. In this thesis, we pursue a different approach compared to classical methods that often construct a robot controller based on the perception-then-action paradigm. We devise robotic action-selection policies by considering action-selection and perception processes as being intertwined, emphasizing that perception comes prior to action and action is key to perception. The main hypothesis is that complex robotic behaviors come as the result of mastering sensorimotor contingencies (SMCs), i.e., regularities between motor actions and associated changes in sensory observations, where SMCs can be seen as building blocks to skillful behaviors. We elaborate and investigate this hypothesis by deliberate design of frameworks which enable policy training merely based on data experienced by a robot,without intervention of human experts for analytical modelings or calibrations. In such circumstances, action policies can be obtained by reinforcement learning (RL) paradigm by making exploratory action decisions and reinforcing patterns of SMCs that lead to reward events for a given task. However, the dimensionality of sensorimotor spaces, complex dynamics of physical tasks, sparseness of reward events, limited amount of data from real-robot experiments, ambiguities of crediting past decisions and safety issues, which arise from exploratory actions of a physical robot, pose challenges to obtain a policy based on data-driven methods alone. In this thesis, we introduce our contributions to deal with the aforementioned issues by devising learning frameworks which endow a robot with the ability to integrate sensorimotor data to obtain action-selection policies. The effectiveness of the proposed frameworks is demonstrated by evaluating the methods on a number of real robotic tasks and illustrating the suitability of the methods to acquire different skills, to make sequential action-decisions in high-dimensional sensorimotor spaces, with limited data and sparse rewards.

Abstract [sv]

Robotar förekommer alltmer i dagens samhälle och tar över många av de uppgifter som tidigare betraktades som tillägnade människor. Flera av dessa uppgifter, som att exempelvis autonomt köra en bil, samarbeta med människor i dynamiska och föränderliga arbetsmiljöer, samt att utföra sysslor i hemmet, kräver mänsklig intelligens för att roboten ska uppfatta världen och agera på lämpligt sätt. I denna avhandling utgår vi ifrån ett annat tillvägagångssätt jämfört med de klassiska metoder för skapande av robotsystem som tidigare ofta byggde på en så kallad perception-then-action paradigm. Vi utformar strategier för val av robotaktioner genom att utgå ifrån att det finns ett önsesidigt beroende mellan perception och aktion, där perception kommer före aktion, samtidigt som aktion är nödvändigt för perception. Huvudhypotesen är att komplexa robotbeteenden kommer som ett resultat av att roboten lär sig bemästra så kallade sensorimotorkopplingar (SMC), dvs regelbundenheter mellan motoriska aktioner och dess motsvarande förändringar i sensoriska observationer, där SMC:ar kan ses som byggblock för komplexa beteenden. Vi utarbetar och undersöker denna hypotes genom att avsiktligt utforma en handfull robotexperiment där en robots kunskaper helt förvärvas utifrån sensorimotoriska data, utan intervention av mänskliga experter för analytisk modellering eller kalibreringar. Under sådana omständigheter är så kallad reinforcement learning (RL) en lämplig paradigm för val av aktioner, en paradigm helt baserad på sensoriska data och utförda motoraktioner, utan krav på handgjorda representationer av världen på hög nivå. Denna paradigm kan utnyttjas för att generera utforskande rörelsemönster och förstärka de sensorimotorkopplingar som leder till framgång för i viss given uppgift. Det finns dock flera faktorer som kompicerar sådan rent datadriven inlärning av beteenden, såsom den sensorimotoriska datans höga dimensionalitet, den fysiska uppgiftens komplexa dynamik, bristen och tvetydigheten i de experiment som leder till positiva utfall, den begränsade mängd experiment som kan göras på en verklig robot och säkerhetsaspekter. De bidrag som introduceras i denna avhandling avser att hantera ovannämnda problem, genom att skapa ramverk för inlärning som gör det möjligt för en robot att integrera sensorimotordata för inlärning av stratieger för val av aktioner. De föreslagna ramverkens effektivitet demonsteras genom att utvärdera metoder på ett antal verkliga robotuppgifter och illustrera metodernas lämplighet för inlärning av olika färdigheter som kräver sekvenser av aktioner utifrån högdimensionell sensorimotorisk data, trots en begränsad mängd experiment med positivt utfall.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2018. p. 80
Series
TRITA-EECS-AVL ; 2018:47
Keyword
Reinforcement Learning, Artificial Intelligence, Robot Learning, Sensorimotor, Policy Training
National Category
Computer and Information Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-228295 (URN)978-91-7729-825-0 (ISBN)
Public defence
2018-06-11, F3, Lindstedtsvägen 26, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 20180521

Available from: 2018-05-21 Created: 2018-05-21 Last updated: 2018-05-21Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopusIEEEXplore

Authority records BETA

Ghadirzadeh, AliMaki, AtsutoBjörkman, Mårten

Search in DiVA

By author/editor
Ghadirzadeh, AliMaki, AtsutoBjörkman, Mårten
By organisation
Computer Vision and Active Perception, CVAPCentre for Autonomous Systems, CAS
Computer Vision and Robotics (Autonomous Systems)

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 559 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf