Change search
ReferencesLink to record
Permanent link

Direct link
Synthetic microfluidic paper: high surface area and high porosity polymer micropillar arrays
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.ORCID iD: 0000-0001-8531-5607
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.ORCID iD: 0000-0002-0441-6893
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.ORCID iD: 0000-0001-8248-6670
2016 (English)In: Lab on a Chip, ISSN 1473-0197, E-ISSN 1473-0189, Vol. 16, no 2, 298-304 p.Article in journal (Refereed) Published
Abstract [en]

We introduce Synthetic Microfluidic Paper, a novel porous material for microfluidic applications that consists of an OSTE polymer that is photostructured in a well-controlled geometry of slanted and interlocked micropillars. We demonstrate the distinct benefits of Synthetic Microfluidic Paper over other porous microfluidic materials, such as nitrocellulose, traditional paper and straight micropillar arrays: in contrast to straight micropillar arrays, the geometry of Synthetic Microfluidic Paper was miniaturized without suffering capillary collapse during manufacturing and fluidic operation, resulting in a six-fold increased internal surface area and a three-fold increased porous fraction. Compared to commercial nitrocellulose materials for capillary assays, Synthetic Microfluidic Paper shows a wider range of capillary pumping speed and four times lower device-to-device variation. Compared to the surfaces of the other porous microfluidic materials that are modified by adsorption, Synthetic Microfluidic Paper contains free thiol groups and has been shown to be suitable for covalent surface chemistry, demonstrated here for increasing the material hydrophilicity. These results illustrate the potential of Synthetic Microfluidic Paper as a porous microfluidic material with improved performance characteristics, especially for bioassay applications such as diagnostic tests.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2016. Vol. 16, no 2, 298-304 p.
Keyword [en]
OSTE, paper microfluidics, microfluidics, porous microfluidics, Lab-on-a-Chip, diagnostics, micropillars
National Category
Paper, Pulp and Fiber Technology Polymer Technologies Biomedical Laboratory Science/Technology
Research subject
URN: urn:nbn:se:kth:diva-180009DOI: 10.1039/C5LC01318FISI: 000367953700010ScopusID: 2-s2.0-84953410894OAI: diva2:891152
EU, FP7, Seventh Framework Programme

QC 20160115

Available from: 2016-01-05 Created: 2016-01-05 Last updated: 2016-02-24Bibliographically approved
In thesis
1. From Lab to Chip – and back: Polymer microfluidic systems for sample handling in point-of-care diagnostics
Open this publication in new window or tab >>From Lab to Chip – and back: Polymer microfluidic systems for sample handling in point-of-care diagnostics
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis contributes to the development of Lab-on-a-Chip systems that enables reliable, rapid medical diagnostics at the point-of-care. These contributions are focused on microfluidic Lab-on-a-Chip systems for sepsis diagnosis, autonomous sample-to-answer tests, and dried blood spot sampling.

Sepsis is a serious condition with high mortality and high costs for society and healthcare. To facilitate rapid and effective antibiotic treatment, improved sepsis diagnostics is needed. Diagnosis of sepsis requires the processing of relatively large blood volumes, creating a need for novel and effective techniques for the handling of large volume flows and pressures on chip. Components, materials, and manufacturing methods for pneumatically driven Lab-on-a-Chip systems have therefore been developed in this thesis. Microvalves, an essential component in many Lab-on-a-Chip systems have been the focus on several of the advances: a novel elastomeric material (Rubbery Off-Stoichiometric-Thiol-Ene-Epoxy) with low gas and liquid permeability; the first leak-tight vertical membrane microvalves, allowing large channel cross-sections for high volumetric flow throughput; and novel PDMS manufacturing methods enabling their realization. Additionally, two of the new components developed in this thesis focus on separation of bacteria from blood cells based on differences in particle size, and cell wall composition: inertial microfluidic removal of large particles in multiple parallel microchannels with low aspect ratio; and selective lysis of blood cells while keeping bacteria intact. How these components, materials and methods could be used together to achieve faster sepsis diagnostics is also discussed.

Lab-on-a-Chip tests can not only be used for sepsis, but have implications in many point-of-care tests. Disposable and completely autonomous sampleto- answer tests, like pregnancy tests, are capillary driven. Applying such tests in more demanding applications has traditionally been limited by poor material properties of the paper-based products used. A new porous material, called “Synthetic Microfluidic Paper”, has been developed in this thesis. The Synthetic Microfluidic Paper features well-defined geometries consisting of slanted interlocked micropillars. The material is transparent, has a large surface area, large porous fraction, and results in low variability in capillary flowrates. The fact that Synthetic Microfluidic Paper can be produced with multiple pore sizes in the same sheet enables novel concepts for self-aligned spotting of liquids and well-controlled positioning of functional microbeads.

Diagnostic testing can also be achieved by collecting the sample at the point-of-care while performing the analysis elsewhere. Easy collection of finger-prick blood in paper can be performed by a method called dried blood spots. This thesis investigates how the process of drying affects the homogeneity of dried blood spots, which can explain part of the variability that has been measured in the subsequent analysis. To reduce this variability, a microfluidic sampling chip has been developed in this thesis. The chip, which is capillary driven, autonomously collects a specific volume of plasma from a drop of blood, and dry-stores it in paper. After sampling, the chip can be mailed back to a central lab for analysis.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2016. xiii, 75 p.
TRITA-EE, ISSN 1653-5146 ; 2016:002
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
urn:nbn:se:kth:diva-180740 (URN)978-91-7595-844-6 (ISBN)
Public defence
2016-02-05, F3, Lindstedtsvägen 26, KTH, Stockholm, 09:00 (English)

QC 20160122

Available from: 2016-01-22 Created: 2016-01-22 Last updated: 2016-01-22Bibliographically approved

Open Access in DiVA

Hansson_2016_Synthetic-microfluidic-paper.pdf(3923 kB)102 downloads
File information
File name FULLTEXT01.pdfFile size 3923 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus!divAbstract

Search in DiVA

By author/editor
Jonas, HanssonYasuga, HirokiHaraldsson, Tommyvan der Wijngaart, Wouter
By organisation
Micro and Nanosystems
In the same journal
Lab on a Chip
Paper, Pulp and Fiber TechnologyPolymer TechnologiesBiomedical Laboratory Science/Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 102 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 1031 hits
ReferencesLink to record
Permanent link

Direct link