Change search
ReferencesLink to record
Permanent link

Direct link
Numerical simulation for the design analysis of kinematic Stirling engines
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology. Facultad de Ciencias y TecnologĂ­a (FCyT), Universidad Mayor de San Simon (UMSS), Cochabamba, Bolivia.ORCID iD: 0000-0002-9254-3453
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
2015 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 159, 633-650 p.Article in journal (Refereed) PublishedText
Abstract [en]

The Stirling engine is a closed-cycle regenerative system that presents good theoretical properties. These include a high thermodynamic efficiency, low emissions levels thanks to a controlled external heat source, and multi-fuel capability among others. However, the performance of actual prototypes largely differs from the mentioned theoretical potential. Actual engine prototypes present low electrical power outputs and high energy losses. These are mainly attributed to the complex interaction between the different components of the engine, and the challenging heat transfer and fluid dynamics requirements. Furthermore, the integration of the engine into decentralized energy systems such as the Combined Heat and Power systems (CHP) entails additional complications. These has increased the need for engineering tools that could assess design improvements, considering a broader range of parameters that would influence the engine performance when integrated within overall systems. Following this trend, the current work aimed to implement an analysis that could integrate the thermodynamics, and the thermal and mechanical interactions that influence the performance of kinematic Stirling engines. In particular for their use in Combined Heat and Power systems. The mentioned analysis was applied for the study of an engine prototype that presented very low experimental performance. The numerical methodology was selected for the identification of possible causes that limited the performance. This analysis is based on a second order Stirling engine model that was previously developed and validated. The simulation allowed to evaluate the effect that different design and operational parameters have on the engine performance, and consequently different performance curves were obtained. These curves allowed to identify ranges for the charged pressure, temperature ratio, heat exchangers dimensions, crank phase angle and crank mechanical effectiveness, where the engine performance was improved. In addition, the curves also permitted to recognise ranges were the design parameters could drastically reduce the brake power and efficiency. The results also showed that the design of the engine is affected by the conditions imposed by the CHP interactions, and that the engine could reach a brake power closer to 832 W with a corresponding brake efficiency of 26% when the adequate design parameters were considered. On the other hand, the performance could also be very low; as the reported in experimental tests, with brake power measurements ranging 52-120W.

Place, publisher, year, edition, pages
2015. Vol. 159, 633-650 p.
Keyword [en]
Thermal model, Stirling engine, CHP, Simulation, Thermodynamics
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:kth:diva-179580DOI: 10.1016/j.apenergy.2015.09.024ISI: 000364880900056ScopusID: 2-s2.0-84942759689OAI: oai:DiVA.org:kth-179580DiVA: diva2:893270
Funder
Sida - Swedish International Development Cooperation Agency
Note

QC 20160112

Available from: 2016-01-12 Created: 2015-12-17 Last updated: 2016-01-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Araoz Ramos, Joseph A.Salomon, MarianneFransson, Torsten H.
By organisation
Heat and Power Technology
In the same journal
Applied Energy
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 49 hits
ReferencesLink to record
Permanent link

Direct link