Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cones of Hilbert Functions
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.).ORCID iD: 0000-0002-9961-383X
2015 (English)In: International mathematics research notices, ISSN 1073-7928, E-ISSN 1687-0247, no 20, p. 10314-10338Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

We study the closed convex hull of various collections of Hilbert functions. Working over a standard graded polynomial ring with modules that are generated in degree 0, we describe the supporting hyperplanes and extreme rays for the cones generated by the Hilbert functions of all modules, all modules with bounded alpha-invariant, and all modules with bounded Castelnuovo-Mumford regularity. The first of these cones is infinite-dimensional and simplicial, the second is finite-dimensional but neither simplicial nor polyhedral, and the third is finite-dimensional and simplicial.

Place, publisher, year, edition, pages
Oxford University Press, 2015. no 20, p. 10314-10338
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-180386DOI: 10.1093/imrn/rnu265ISI: 000366500400015Scopus ID: 2-s2.0-84948389776OAI: oai:DiVA.org:kth-180386DiVA: diva2:894121
Note

QC 20160114

Available from: 2016-01-14 Created: 2016-01-13 Last updated: 2017-11-30Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Boij, Mats

Search in DiVA

By author/editor
Boij, Mats
By organisation
Mathematics (Dept.)
In the same journal
International mathematics research notices
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 27 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf