Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Taxonomy Based Image Retrieval: Taxonomy Based Image Retrieval using Data from Multiple Sources
KTH, School of Computer Science and Communication (CSC).
2016 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Taxonomibaserad Bildsök (Swedish)
Abstract [en]

With a multitude of images available on the Internet, how do we find what we are looking for? This project tries to determine how much the precision and recall of search queries is improved by using a word taxonomy on traditional Text-Based Image Search and Content-Based Image Search. By applying a word taxonomy to different data sources, a strong keyword filter and a keyword extender were implemented and tested. The results show that depending on the implementation, the precision or the recall can be increased. By using a similar approach on real life implementations, it is possible to force images with higher precisions to the front while keeping a high recall value, thus increasing the experienced relevance of image search.

Abstract [sv]

Med den mängd bilder som nu finns tillgänglig på Internet, hur kan vi fortfarande hitta det vi letar efter? Denna uppsats försöker avgöra hur mycket bildprecision och bildåterkallning kan öka med hjälp av appliceringen av en ordtaxonomi på traditionell Text-Based Image Search och Content-Based Image Search. Genom att applicera en ordtaxonomi på olika datakällor kan ett starkt ordfilter samt en modul som förlänger ordlistor skapas och testas. Resultaten pekar på att beroende på implementationen så kan antingen precisionen eller återkallningen förbättras. Genom att använda en liknande metod i ett verkligt scenario är det därför möjligt att flytta bilder med hög precision längre fram i resultatlistan och samtidigt behålla hög återkallning, och därmed öka den upplevda relevansen i bildsök.

Place, publisher, year, edition, pages
2016.
Keyword [en]
Taxonomy, Image Retrieval, TBIR, CBIR, WordNet, Text-Based Image Search, Content-Based Image Search
National Category
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-180574OAI: oai:DiVA.org:kth-180574DiVA: diva2:895467
External cooperation
Findwise
Educational program
Master of Science in Engineering - Computer Science and Technology
Supervisors
Examiners
Available from: 2016-02-09 Created: 2016-01-19 Last updated: 2016-02-09Bibliographically approved

Open Access in DiVA

taxonomy_based_image_retrieval(4325 kB)374 downloads
File information
File name FULLTEXT01.pdfFile size 4325 kBChecksum SHA-512
eca6b1bb90672eac0726df1ab4f939ce512017ad65cd188088556bbe8256616e38c33602b9234b1bde91d3c47606d15ee56525a9959f426b49213bdc18627eff
Type fulltextMimetype application/pdf

By organisation
School of Computer Science and Communication (CSC)
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 374 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 792 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf