Change search
ReferencesLink to record
Permanent link

Direct link
Watching the dynamics of electrons and atoms at work in solar energy conversion
Show others and affiliations
2015 (English)In: Faraday discussions (Online), ISSN 1359-6640, E-ISSN 1364-5498, Vol. 185, 51-68 p.Article in journal (Refereed) PublishedText
Abstract [en]

The photochemical reactions performed by transition metal complexes have been proposed as viable routes towards solar energy conversion and storage into other forms that can be conveniently used in our everyday applications. In order to develop efficient materials, it is necessary to identify, characterize and optimize the elementary steps of the entire process on the atomic scale. To this end, we have studied the photoinduced electronic and structural dynamics in two heterobimetallic ruthenium-cobalt dyads, which belong to the large family of donor-bridge-acceptor systems. Using a combination of ultrafast optical and X-ray absorption spectroscopies, we can clock the light-driven electron transfer processes with element and spin sensitivity. In addition, the changes in local structure around the two metal centers are monitored. These experiments show that the nature of the connecting bridge is decisive for controlling the forward and the backward electron transfer rates, a result supported by quantum chemistry calculations. More generally, this work illustrates how ultrafast optical and X-ray

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2015. Vol. 185, 51-68 p.
Keyword [en]
National Category
Chemical Engineering
URN: urn:nbn:se:kth:diva-180639DOI: 10.1039/c5fd00084jISI: 000366909400003ScopusID: 2-s2.0-84952326832OAI: diva2:895501

QC 20160119

Available from: 2016-01-19 Created: 2016-01-19 Last updated: 2016-01-19Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Sun, Licheng
By organisation
Organic Chemistry
In the same journal
Faraday discussions (Online)
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 22 hits
ReferencesLink to record
Permanent link

Direct link