Change search
ReferencesLink to record
Permanent link

Direct link
Theoretical assessment of feasibility to sequence DNA through interlayer electronic tunneling transport at aligned nanopores in bilayer graphene
Show others and affiliations
2015 (English)In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 5, 17560Article in journal (Refereed) PublishedText
Abstract [en]

Fast, cost effective, single-shot DNA sequencing could be the prelude of a new era in genetics. As DNA encodes the information for the production of proteins in all known living beings on Earth, determining the nucleobase sequences is the first and necessary step in that direction. Graphene-based nanopore devices hold great promise for next-generation DNA sequencing. In this work, we develop a novel approach for sequencing DNA using bilayer graphene to read the interlayer conductance through the layers in the presence of target nucleobases. Classical molecular dynamics simulations of DNA translocation through the pore were performed to trace the nucleobase trajectories and evaluate the interaction between the nucleobases and the nanopore. This interaction stabilizes the bases in different orientations, resulting in smaller fluctuations of the nucleobases inside the pore. We assessed the performance of a bilayer graphene nanopore setup for the purpose of DNA sequencing by employing density functional theory and non-equilibrium Green's function method to investigate the interlayer conductance of nucleobases coupling simultaneously to the top and bottom graphene layers. The obtained conductance is significantly affected by the presence of DNA in the bilayer graphene nanopore, allowing us to analyze DNA sequences.

Place, publisher, year, edition, pages
Nature Publishing Group, 2015. Vol. 5, 17560
National Category
Physical Sciences
URN: urn:nbn:se:kth:diva-180221DOI: 10.1038/srep17560ISI: 000365823000001PubMedID: 26634811ScopusID: 2-s2.0-84949310104OAI: diva2:895612

QC 20160119

Available from: 2016-01-19 Created: 2016-01-08 Last updated: 2016-01-19Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Ahuja, Rajeev
By organisation
Applied Material Physics
In the same journal
Scientific Reports
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 13 hits
ReferencesLink to record
Permanent link

Direct link