Change search
ReferencesLink to record
Permanent link

Direct link
Numerical analysis of the angular motion of a neutrally buoyant spheroid in shear flow at small Reynolds numbers
KTH, School of Engineering Sciences (SCI), Mechanics, Fluid Physics.ORCID iD: 0000-0002-2346-7063
KTH, School of Engineering Sciences (SCI), Mechanics, Structural Mechanics.
Show others and affiliations
2015 (English)In: Physical Review E. Statistical, Nonlinear, and Soft Matter Physics, ISSN 1539-3755, E-ISSN 1550-2376, Vol. 92, no 6, 063022Article in journal (Refereed) PublishedText
Abstract [en]

We numerically analyze the rotation of a neutrally buoyant spheroid in a shear flow at small shear Reynolds number. Using direct numerical stability analysis of the coupled nonlinear particle-flow problem, we compute the linear stability of the log-rolling orbit at small shear Reynolds number Re-a. As Re-a -> 0 and as the box size of the system tends to infinity, we find good agreement between the numerical results and earlier analytical predictions valid to linear order in Re-a for the case of an unbounded shear. The numerical stability analysis indicates that there are substantial finite-size corrections to the analytical results obtained for the unbounded system. We also compare the analytical results to results of lattice Boltzmann simulations to analyze the stability of the tumbling orbit at shear Reynolds numbers of order unity. Theory for an unbounded system at infinitesimal shear Reynolds number predicts a bifurcation of the tumbling orbit at aspect ratio lambda(c) approximate to 0.137 below which tumbling is stable (as well as log rolling). The simulation results show a bifurcation line in the lambda-Re-a plane that reaches lambda approximate to 0.1275 at the smallest shear Reynolds number (Re-a = 1) at which we could simulate with the lattice Boltzmann code, in qualitative agreement with the analytical results.

Place, publisher, year, edition, pages
American Physical Society , 2015. Vol. 92, no 6, 063022
Keyword [en]
National Category
Fluid Mechanics and Acoustics
URN: urn:nbn:se:kth:diva-180597DOI: 10.1103/PhysRevE.92.063022ISI: 000367081600010ScopusID: 2-s2.0-84954503118OAI: diva2:896194

QC 20160120

Available from: 2016-01-20 Created: 2016-01-19 Last updated: 2016-01-20Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Rosen, TomasNordmark, ArneLundell, Fredrik
By organisation
Fluid PhysicsStructural MechanicsWallenberg Wood Science Center
In the same journal
Physical Review E. Statistical, Nonlinear, and Soft Matter Physics
Fluid Mechanics and Acoustics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 19 hits
ReferencesLink to record
Permanent link

Direct link