Change search
ReferencesLink to record
Permanent link

Direct link
Density functional theory calculations of graphene-based humidity and carbon dioxide sensors: effect of silica and sapphire substrates
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF. KTH, Centres, SeRC - Swedish e-Science Research Centre.ORCID iD: 0000-0002-8222-3157
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF.ORCID iD: 0000-0001-8748-3890
KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Identifiers
URN: urn:nbn:se:kth:diva-181089OAI: oai:DiVA.org:kth-181089DiVA: diva2:898532
Note

QS 2016

Available from: 2016-01-28 Created: 2016-01-28 Last updated: 2016-01-28Bibliographically approved
In thesis
1. Density Functional Theory Calculations of Graphene based Humidity and Carbon Dioxide Sensors
Open this publication in new window or tab >>Density Functional Theory Calculations of Graphene based Humidity and Carbon Dioxide Sensors
2016 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Graphene has many interesting physical properties which makes it useful for plenty of applications. In this work we investigate the possibility of using graphene as a carbon dioxide and humidity sensor. Carbon dioxide and water adsorbates are modeled on top of the surface of a graphene sheet, which themselves lie on one of two types of silica substrates or sapphire substrate. We evaluate the changes in the electronic and structural properties of the graphene sheet in the presence of the described adsorbates as well as the accompanying substrate. We perform the study using ab-initio calculations based on density functional theory (DFT), that allows fast, accurate and efficient investigations. In particular, we focus our attention on investigating the effects of defects in the substrate and how it influences the properties of the graphene sheet. The defects of the substrate contribute with impurity bands leading to doping effects on the graphene sheet, which in turn together with the presence of the adsorbates result in changes of the electronic charge distribution in the system. We provide charge density difference plots to visualize these changes and also determine the relaxed minimum distances of the adsorbates from the graphene sheet together with the respective minimum energy configurations. We also include the density of states, Löwdin charges and work functions for further investigations.

Abstract [sv]

Grafen har många intressanta fysikaliska egenskaper, vilket gör det användbart för många  tillämpningar. I detta arbete har vi teoretiskt undersökt möjligheten att använda grafen som gassensor för koldioxid och fukt. Adsorberade koldioxid- och vattenmolekyler modelleras ovanför ytan av ett lager grafen, som i sig ligger ovanpå en av två typer av kiseldioxidsubstrat eller ett aluminiumoxidsubstrat. Vi har utvärderat förändringar i de elektroniska och strukturella egenskaperna hos grafenlagret i närvaro av de beskrivna molekylerna samt åtföljande substrat. Vi utför studien med ab-initio beräkningar baserade på täthetsfunktionalteori (DFT), som möjliggör snabba, korrekta och effektiva elektronstruktursberäkningar. Framför allt fokuserar vi på effekten av defekter i underlaget, och hur dessa påverkar egenskaperna hos grafenlagret. Defekter i underlaget bidrar genom att införa elektroniska band som leder till dopningseffekter i grafenlagret, vilket i sin tur tillsammans med närvaron av adsorbatmolekylerna leder till förändringar av den elektroniska laddningsfördelningen i systemet. Vi tillhandahåller s.k. laddningsdensitet-skillnadsfigurer som visualiserar dessa förändringar. Vi har även beräknat jämviktsavståndet mellan adsorbatmolekylerna och grafenlagret  tillsammans med respektive minimienergikonfigurationer för molekylerna, Vi åksa tillhandahåller täthet av stater, Löwdin laddningar och arbetsfunktion för fortsatta undersökningar.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2016. xi, 20 p.
Series
, TRITA-ICT, 2016:02
Keyword
DFT, graphene, sensors, Quantum Espresso, ab-initio
National Category
Condensed Matter Physics
Research subject
Physics
Identifiers
urn:nbn:se:kth:diva-180761 (URN)978-91-7595-817-0 (ISBN)
Presentation
2016-02-19, Sal/hall 205, Elektrum 229, Isafjordsgatan 22, KTH-ICT, Kista, 10:00 (English)
Opponent
Supervisors
Funder
Swedish e‐Science Research Center
Note

QC 20160218

Available from: 2016-01-28 Created: 2016-01-22 Last updated: 2016-02-12Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Elgammal, KarimHugosson, Håkan W.Råsander, MikaelBergqvist, LarsDelin, Anna
By organisation
Material Physics, MFSeRC - Swedish e-Science Research CentreIntegrated Devices and Circuits

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 219 hits
ReferencesLink to record
Permanent link

Direct link