Change search
ReferencesLink to record
Permanent link

Direct link
Breakup of Finite-Size Colloidal Aggregates in Turbulent Flow Investigated by Three-Dimensional (3D) Particle Tracking Velocimetry
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Energy Processes.ORCID iD: 0000-0001-7995-3151
Show others and affiliations
2016 (English)In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 32, no 1, 55-65 p.Article in journal (Refereed) PublishedText
Abstract [en]

Aggregates grown in mild shear flow are released, one at a time, into homogeneous isotropic turbulence, where their motion and intermittent breakup is recorded by three-dimensional particle tracking velocimetry (3D-PTV). The aggregates have an open structure with a fractal dimension of similar to 2.2, and their size is 1.4 +/- 0.4 mm, which is large, compared to the Kolmogorov length scale (eta = 0.15 mm). 3D-PTV of flow tracers allows for the simultaneous measurement of aggregate trajectories and the full velocity gradient tensor along their pathlines, which enables us to access the Lagrangian stress history of individual breakup events. From this data, we found no consistent pattern that relates breakup to the local flow properties at the point of breakup. Also, the correlation between the aggregate size and both shear stress and normal stress at the location of breakage is found to be weaker, when compared with the correlation between size and drag stress. The analysis suggests that the aggregates are mostly broken due to the accumulation of the drag stress over a time lag on the order of the Kolmogorov time scale. This finding is explained by the fact that the aggregates are large, which gives their motion inertia and increases the time for stress propagation inside the aggregate. Furthermore, it is found that the scaling of the largest fragment and the accumulated stress at breakup follows an earlier established power law, i.e., d(frag) sigma(-0.6) obtained from laminar nozzle experiments. This indicates that, despite the large size and the different type of hydrodynamic stress, the microscopic mechanism causing breakup is consistent over a wide range of aggregate size and stress magnitude.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2016. Vol. 32, no 1, 55-65 p.
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-182159DOI: 10.1021/acs.langmuir.5b03804ISI: 000368321700008PubMedID: 26646289ScopusID: 2-s2.0-84954286349OAI: oai:DiVA.org:kth-182159DiVA: diva2:904480
Funder
Swedish Research Council, 2012-6216
Note

QC 20160218

Available from: 2016-02-18 Created: 2016-02-16 Last updated: 2016-02-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Babler, Matthaus U.Soos, Miroslav
By organisation
Energy Processes
In the same journal
Langmuir
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 10 hits
ReferencesLink to record
Permanent link

Direct link