Change search
ReferencesLink to record
Permanent link

Direct link
Visible light-driven water oxidation using a covalently-linked molecular catalyst-sensitizer dyad assembled on a TiO2 electrode
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.ORCID iD: 0000-0003-3455-0855
Show others and affiliations
2016 (English)In: Chemical Science, ISSN 2041-6520, E-ISSN 2041-6539, Vol. 7, no 2, 1430-1439 p.Article in journal (Refereed) PublishedText
Abstract [en]

The combination of porphyrin as a sensitizer and a ruthenium complex as a water oxidation catalyst (WOC) is promising to exploit highly efficient molecular artificial photosynthetic systems. A covalently-linked ruthenium-based WOC-zinc porphyrin (ZnP) sensitizer dyad was assembled on a TiO2 electrode for visible-light driven water oxidation. The water oxidation activity was found to be improved in comparison to the reference systems with the simple combination of the individual WOC and ZnP as well as with ZnP solely, demonstrating the advantage of the covalent linking approach over the non-covalent one. More importantly, via vectorial multi-step electron transfer triggered by visible light, the dye-sensitized photoelectrochemical cell (DSPEC) achieved a broader PEC response in the visible region than DSPECs with conventional ruthenium-based sensitizers. Initial incident photon-to-current efficiencies of 18% at 424 nm and 6.4% at 564 nm were attained under monochromatic illumination and an external bias of -0.2 V vs. NHE. Fast electron transfer from the WOC to the photogenerated radical cation of the sensitizer through the covalent linkage may suppress undesirable charge recombination, realizing the moderate performance of water oxidation. X-ray photoelectron spectroscopic analysis of the photoanodes before and after the DSPEC operation suggested that most of the ruthenium species exist at higher oxidation states, implying that the insufficient oxidation potential of the ZnP moiety for further oxidizing the intermediate ruthenium species at the photoanode is at least the bottleneck of the system.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2016. Vol. 7, no 2, 1430-1439 p.
National Category
Chemical Sciences
URN: urn:nbn:se:kth:diva-182791DOI: 10.1039/c5sc03669kISI: 000368835300074ScopusID: 2-s2.0-84961310434OAI: diva2:905931

QC 20160223

Available from: 2016-02-23 Created: 2016-02-23 Last updated: 2016-02-23Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Wang, LeiLi, FushengSun, LichengImahori, Hiroshi
By organisation
Organic Chemistry
In the same journal
Chemical Science
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 18 hits
ReferencesLink to record
Permanent link

Direct link