Change search
ReferencesLink to record
Permanent link

Direct link
Understanding the optical properties of ZnO1-xSx and ZnO1-xSex alloys
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering. University of Oslo, Norway.ORCID iD: 0000-0002-9050-5445
2016 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 119, no 4, 045704Article in journal (Refereed) PublishedText
Abstract [en]

ZnO1-xYx with chalcogen element Y exhibits intriguing optoelectronic properties as the alloying strongly impacts the band-gap energy E-g(x). In this work, we analyze and compare the electronic structures and the dielectric responses of Zn(O,S) and Zn(O, Se) alloys by means of the density functional theory and the partially self-consistent GW approach. We model the crystalline stability from the total energies, and the results indicate that Zn(O, S) is more stable as alloy than Zn(O, Se). We demonstrate also that ion relaxation strongly affects total energies, and that the band-gap bowing depends primarily on local relaxation of the bonds. Moreover, we show that the composition dependent band-gap needs to be analyzed by the band anti-crossing model for small alloying concentration, while the alloying band-bowing model is accurate for strong alloying. We find that the Se-based alloys have a stronger change in the band-gap energy (for instance, Delta E-g(0.50) = E-g(ZnO) -(E)g(x = 0.50) approximate to 2.2 eV) compared with that of the S-based alloy (Delta E-g(0.50) = 1.2 eV), mainly due to a stronger relaxation of the Zn-anion bonds that affects the electronic structure near the band edges. The optical properties of the alloys are discussed in terms of the complex dielectric function epsilon(omega) = epsilon(1)(omega) + i epsilon(2)(omega) and the absorption coefficient alpha(omega). While the large band-gap bowing directly impacts the low-energy absorption spectra, the high-frequency dielectric constant epsilon(infinity) is correlated to the intensity of the dielectric response at energies above 4 eV. Therefore, the dielectric constant is only weakly affected by the non-linear band-gap variation. Despite strong structural relaxation, the high absorption coefficients of the alloys demonstrate that the alloys have well-behaved optoelectronic properties.

Place, publisher, year, edition, pages
American Institute of Physics (AIP), 2016. Vol. 119, no 4, 045704
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-183334DOI: 10.1063/1.4940700ISI: 000369896300047ScopusID: 2-s2.0-84956618463OAI: oai:DiVA.org:kth-183334DiVA: diva2:910130
Note

QC 20160308

Available from: 2016-03-08 Created: 2016-03-07 Last updated: 2016-03-19Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Baldissera, GustavoPersson, Clas
By organisation
Materials Science and Engineering
In the same journal
Journal of Applied Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 34 hits
ReferencesLink to record
Permanent link

Direct link