Change search
ReferencesLink to record
Permanent link

Direct link
Response surface single loop reliability-based design optimization with higher order reliability assessment
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.), Solid Mechanics (Div.).
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.), Solid Mechanics (Div.).
(English)Manuscript (preprint) (Other academic)
National Category
Applied Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-183562OAI: oai:DiVA.org:kth-183562DiVA: diva2:912595
Note

QS 2016

Available from: 2016-03-17 Created: 2016-03-17 Last updated: 2016-03-17Bibliographically approved
In thesis
1. Reliability Assessment and Probabilistic Optimization in Structural Design
Open this publication in new window or tab >>Reliability Assessment and Probabilistic Optimization in Structural Design
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Research in the field of reliability based design is mainly focused on two sub-areas: The computation of the probability of failure and its integration in the reliability based design optimization (RBDO) loop. Four papers are presented in this work, representing a contribution to both sub-areas. In the first paper, a new Second Order Reliability Method (SORM) is presented. As opposed to the most commonly used SORMs, the presented approach is not limited to hyper-parabolic approximation of the performance function at the Most Probable Point (MPP) of failure. Instead, a full quadratic fit is used leading to a better approximation of the real performance function and therefore more accurate values of the probability of failure. The second paper focuses on the integration of the expression for the probability of failure for general quadratic function, presented in the first paper, in RBDO. One important feature of the proposed approach is that it does not involve locating the MPP. In the third paper, the expressions for the probability of failure based on general quadratic limit-state functions presented in the first paper are applied for the special case of a hyper-parabola. The expression is reformulated and simplified so that the probability of failure is only a function of three statistical measures: the Cornell reliability index, the skewness and the kurtosis of the hyper-parabola. These statistical measures are functions of the First-Order Reliability Index and the curvatures at the MPP. In the last paper, an approximate and efficient reliability method is proposed. Focus is on computational efficiency as well as intuitiveness for practicing engineers, especially regarding probabilistic fatigue problems where volume methods are used. The number of function evaluations to compute the probability of failure of the design under different types of uncertainties is a priori known to be 3n+2 in the proposed method, where n is the number of stochastic design variables.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2016. x, 23 p.
Series
TRITA-HFL. Report / Royal Institute of Technology, Solid Mechanics, ISSN 1654-1472 ; 0594
Keyword
Reliability-based design optimization (RBDO), First- and Second-Order Reliability Method (FORM and SORM), Response Surface Single Loop (RSSL), Probability of failure, Reliability Assessment, Probability of fatigue failure
National Category
Applied Mechanics
Research subject
Solid Mechanics
Identifiers
urn:nbn:se:kth:diva-183572 (URN)978-91-7595-908-5 (ISBN)
Public defence
2016-04-06, Sal F3, Lindstedtsvägen 26, KTH, Stockholm, 10:15 (English)
Opponent
Supervisors
Note

QC 20160317

Available from: 2016-03-17 Created: 2016-03-17 Last updated: 2016-03-29Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Mansour, RamiOlsson, Mårten
By organisation
Solid Mechanics (Div.)
Applied Mechanics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 19 hits
ReferencesLink to record
Permanent link

Direct link