Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Enhancement of photocatalytic degradation of methyl orange by supported zinc oxide nanorods/zinc stannate (ZnO/ZTO) on porous substrates
Center of Excellence in Nanotechnology, Asian Institute of Technology,Thailand.ORCID iD: 0000-0002-0074-3504
2013 (English)In: Industrial and Engineering Chemistry Research, ISSN 0888-5885, Vol. 52, no 38, 13629-13636 p.Article in journal (Refereed) Published
Abstract [en]

Dye wastewater from textile industries is reported to be a major river pollutant. Zinc stannate (ZTO) was grown directly on zinc oxide (ZnO) nanorod-coated polyester fiber membranes and porous ceramic substrates by a mild hydrothermal method, where the nanorods supplied zinc ions for ZTO growth. Photocatalytic degradation of a methyl orange aqueous solution under UV-light irradiation was monitored for up to 3 h duration. The higher photocatalytic activity of ZnO/ZTO catalysts on ceramic substrates was attributed to the large surface area of the nanocomposites. 50% methyl orange and similar to 95% methyl orange could be degraded within 1 and 3 h of UV-light irradiation, respectively, by using the porous-ceramic-supported catalysts (C-ZnO/10ZTO), because of efficient charge separation. Moreover, the formation of ZTO islands on ZnO nanorods led to an enhancement in the photocatalytic activity in the exposed areas of electron-rich ZnO nanorods.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2013. Vol. 52, no 38, 13629-13636 p.
National Category
Nano Technology
Identifiers
URN: urn:nbn:se:kth:diva-175194DOI: 10.1021/ie4019726ISI: 000330098700014Scopus ID: 2-s2.0-84884958525OAI: oai:DiVA.org:kth-175194DiVA: diva2:914342
Note

QC 20160401

Available from: 2016-03-23 Created: 2015-10-10 Last updated: 2016-04-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Dutta, Joydeep
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 76 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf