Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modulation of defect-mediated energy transfer from ZnO nanoparticles for the photocatalytic degradation of bilirubin
Show others and affiliations
2013 (English)In: Beilstein Journal of Nanotechnology, ISSN 2190-4286, Vol. 4, no 1, 714-725 p.Article in journal (Refereed) Published
Abstract [en]

In recent years, nanotechnology has gained significant interest for applications in the medical field. In this regard, a utilization of the ZnO nanoparticles for the efficient degradation of bilirubin (BR) through photocatalysis was explored. BR is a water insoluble byproduct of the heme catabolism that can cause jaundice when its excretion is impaired. The photocatalytic degradation of BR activated by ZnO nanoparticles through a non-radiative energy transfer pathway can be influenced by the surface defect-states (mainly the oxygen vacancies) of the catalyst nanoparticles. These were modulated by applying a simple annealing in an oxygen-rich atmosphere. The mechanism of the energy transfer process between the ZnO nanoparticles and the BR molecules adsorbed at the surface was studied by using steady-state and picosecond-resolved fluorescence spectroscopy. A correlation of photocatalytic degradation and time-correlated single photon counting studies revealed that the defect-engineered ZnO nanoparticles that were obtained through post-annealing treatments led to an efficient decomposition of BR molecules that was enabled by Forster resonance energy transfer.

Place, publisher, year, edition, pages
BEILSTEIN-INSTITUT , 2013. Vol. 4, no 1, 714-725 p.
National Category
Nano Technology
Identifiers
URN: urn:nbn:se:kth:diva-175191DOI: 10.3762/bjnano.4.81ISI: 000327716100001Scopus ID: 2-s2.0-84888806241OAI: oai:DiVA.org:kth-175191DiVA: diva2:914345
Note

QC 20160401

Available from: 2016-03-23 Created: 2015-10-10 Last updated: 2016-04-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Dutta, Joydeep
In the same journal
Beilstein Journal of Nanotechnology
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 59 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf