Change search
ReferencesLink to record
Permanent link

Direct link
Chemical Synthesis of Iron Antimonide (FeSb2) and Its Thermoelectric Properties
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics. Stockholm University, Sweden.ORCID iD: 0000-0001-5380-975X
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.ORCID iD: 0000-0003-0855-5265
Show others and affiliations
2016 (English)In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 55, no 4, 1831-1836 p.Article in journal (Refereed) PublishedText
Abstract [en]

Low temperature thermoelectric (TE) materials are in demand for more efficient cooling and power generation applications. Iron antimonide (FeSb2) draws great attention over the past few years because of its enhanced power factor values. Polycrystalline bulk FeSb2 nanopowder was prepared via a low-temperature molten salts approach followed by subsequent thermal treatment in synthetic air and hydrogen gas for calcination and reduction reactions, respectively. Structural analysis confirms the desired final phase with submicrometer grain size and high compaction density after consolidation using spark plasma sintering (SPS). TE transport properties revealed that the material is n-type below 150 K and p-type above this temperature; this suggests antimony vacancies in FeSb2. The electrical conductivity increased significantly, and the highest conductivity achieved was 6000 S/cm at 100 K. The maximum figure-of-merit, ZT, of 0.04 is achieved at 500 K, which is about 6 times higher than the earlier reported state-of-the art ZT value for the same material.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2016. Vol. 55, no 4, 1831-1836 p.
National Category
Chemical Sciences
URN: urn:nbn:se:kth:diva-184039DOI: 10.1021/acs.inorgchem.5b02658ISI: 000370395000055PubMedID: 26836130ScopusID: 2-s2.0-84958818272OAI: diva2:914391

QC 20160323

Available from: 2016-03-23 Created: 2016-03-22 Last updated: 2016-05-03Bibliographically approved
In thesis
1. Nanostructured Bulk Thermoelectrics: Scalable Fabrication Routes, Processing and Evaluation
Open this publication in new window or tab >>Nanostructured Bulk Thermoelectrics: Scalable Fabrication Routes, Processing and Evaluation
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Current fossil fuel based energy sources have a huge shortcoming when one discusses their efficiency. The conversion efficiency of fossil fuel-based technologies is less than 40% in best cases. Therefore, until the renewable energy section is mature enough to handle all the energy demand one has to research and develop the technologies available to harvest the energy from the waste heat generated in fossil fuel-based supply sources. One of these emerging technologies is the use of thermoelectric (TE) devices to achieve this goal, which are solid-state devices capable of directly interconverting between heat and electrical energy. In the past decade there has been a significant scientific and financial investment within the field to enhance their properties and result in time/energy efficient fabrication processes of TE materials and devices for a more sustainable environment.

In this thesis with use of chemical synthesis routes for nanostructured bulk thermoelectric materials iron antimonide (FeSb2), skutterudites (based on general formula of RzMxCo1-xSb3-yNy) and copper selenide (Cu2Se) are developed. These materials are promising candidates for use in thermoelectric generators (TEG) or for sensing applications. Using chemical synthesis routes such as chemical co-precipitation, salt melting in marginal solvents and thermolysis, fabrication of these TE materials with good performance can be performed with high degree of reproducibility, in a much shorter time, and easily scalable manner for industrial processes. The TE figure of merit ZT of these materials is comparable to, or better than their conventional method counterparts to ensure the applicability of these processes in industrial scale.

Finally, through thorough investigation, optimized consolidation parameters were generated for compaction of each family of materials using Spark Plasma Sintering technique (SPS). As each family of TE nanomaterial investigated in this thesis had little to no prior consolidation literature available, specific parameters had to be studied and generated. The aim of studies on compaction parameters were to focus on preservation of the nanostructured features of the powder while reaching a high compaction density to have positive effects on the materials TE figure of merit.

Abstract [sv]

Dagens fossilbränslebaserade energikällor har en enorm brist gällande effektivitet. Effektiviteten av fossilbränslebaserade teknologiers omvandling är mindre än 40 % i bästa fall. Därför tills förnybar energi är mogen nog att hantera alla energibehov, måste man forska och utveckla teknik för att skörda energi från spillvärme i fossilbränslebaserade försörjningskällor. En av dessa nya tekniker är tillämpning av termoelektriska (TE) material för att uppnå målet. Nämnde material är Soldi-State materialer som kan transformera mellan värme och elektrisk energi. Under det senaste decenniet har det pågått en stor vetenskaplig och ekonomisk investering inom området för att förbättra termoelektriska materials egenskaper. Dessutom ville man ta fram tid/energieffektiva TE material och komponenter för en mer hållbar miljö.

I denna avhandling utvecklades och producerades termoelektriska material såsom järn antimonid (FeSb2), skutterudit (baserat på allmänna formeln RzMxCo1-xSb3-YNY) och koppar selenid (Cu2Se) med hjälp av kemiska syntesmetoder. Genom att Använda kemiska syntesmetoder som kemisk samutfällning, salt smältning i marginella lösningsmedel och termolys, kan material med hög grad av reproducerbarhet och ställbar för industriella processer tillverkas.   Termoelektrisk omvandling effektivitet hos uppnådde material är betydligt högre än resultat av andra studier. I och med detta kan man säga att materialet kan användas inom industri.

Slutligen, genom en grundlig undersökning optimerades packningsparametrar som genererades för packning av varje materialgrupp med hjälp av Spark Plasma Sintring teknik (SPS). Eftersom ingen relevant studie finns för varje grupp av termoelektriska nanomaterial som undersökts i denna avhandling, studerades och genererades dessa specifika parametrar. Syftet med studien är att fokusera på bevarande av nanostrukturerade egenskaperna hos pulvret och att samtidigt nå en hög packningstäthet för att ha positiva effekter på materialens termoelektriska omvandlingseffektivitet.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2016. x, 34 p.
TRITA-ICT, 2016:10
Thermoelectric, Iron antimonide (FeSb2) Skutterudite, Copper Selenide (Cu2Se), Spark Plasma Sintering (SPS), nanomaterial
National Category
Condensed Matter Physics
Research subject
Materials Science and Engineering; Energy Technology
urn:nbn:se:kth:diva-186124 (URN)978-91-7595-945-0 (ISBN)
Public defence
2016-05-27, Sal C, Isafjordsgatan 22, Kista, 10:00 (English)
Swedish Foundation for Strategic Research , EM11‐0002EU, FP7, Seventh Framework Programme, 263167

QC 20160503

Available from: 2016-05-03 Created: 2016-05-02 Last updated: 2016-05-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Saleemi, MohsinTafti, Mohsen YakhshiToprak, Muhammet S.
By organisation
Materials- and Nano Physics
In the same journal
Inorganic Chemistry
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 52 hits
ReferencesLink to record
Permanent link

Direct link