Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Ewald summation for the rotlet singularity of Stokes flow
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.ORCID iD: 0000-0001-7425-8029
2016 (English)Report (Other academic)
Abstract [en]

Ewald summation is an efficient method for computing the periodic sums that appear when considering the Green's functions of Stokes flow together with periodic boundary conditions. We show how Ewald summation, and accompanying truncation error estimates, can be easily derived for the rotlet, by considering it as a superposition of electrostatic force calculations.

Place, publisher, year, edition, pages
2016. , 9 p.
National Category
Fluid Mechanics and Acoustics Computational Mathematics
Research subject
Applied and Computational Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-184125OAI: oai:DiVA.org:kth-184125DiVA: diva2:914925
Note

QC20160407

Available from: 2016-03-28 Created: 2016-03-28 Last updated: 2016-04-27Bibliographically approved
In thesis
1. Fast and accurate integral equation methods with applications in microfluidics
Open this publication in new window or tab >>Fast and accurate integral equation methods with applications in microfluidics
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis is concerned with computational methods for fluid flows on the microscale, also known as microfluidics. This is motivated by current research in biological physics and miniaturization technology, where there is a need to understand complex flows involving microscale structures. Numerical simulations are an important tool for doing this.

The first, and smaller, part of the thesis presents a numerical method for simulating multiphase flows involving insoluble surfactants and moving contact lines. The method is based on an interface decomposition resulting in local, Eulerian grid representations. This provides a natural setting for solving the PDE governing the surfactant concentration on the interface.

The second, and larger, part of the thesis is concerned with a framework for simulating large systems of rigid particles in three-dimensional, periodic viscous flow using a boundary integral formulation. This framework can solve the underlying flow equations to high accuracy, due to the accurate nature of surface quadrature. It is also fast, due to the natural coupling between boundary integral methods and fast summation methods.

The development of the boundary integral framework spans several different fields of numerical analysis. For fast computations of large systems, a fast Ewald summation method known as Spectral Ewald is adapted to work with the Stokes double layer potential. For accurate numerical integration, a method known as Quadrature by Expansion is developed for this same potential, and also accelerated through a scheme based on geometrical symmetries. To better understand the errors accompanying this quadrature method, an error analysis based on contour integration and calculus of residues is carried out, resulting in highly accurate error estimates.

Abstract [sv]

Denna avhandling behandlar beräkningsmetoder för strömning på mikroskalan, även känt som mikrofluidik. Detta val av ämne motiveras av aktuell forskning inom biologisk fysik och miniatyrisering, där det ofta finns ett behov av att förstå komplexa flöden med strukturer på mikroskalan. Datorsimuleringar är ett viktigt verktyg för att öka den förståelsen.

Avhandlingens första, och mindre, del beskriver en numerisk metod för att simulera flerfasflöden med olösliga surfaktanter och rörliga kontaktlinjer. Metoden är baserad på en uppdelning av gränsskiktet, som tillåter det att representeras med lokala, Euleriska nät. Detta skapar naturliga förutsättningar för lösning av den PDE som styr surfaktantkoncentrationen på gränsskiktets yta.

Avhandlingens andra, och större, del beskriver ett ramverk för att med hjälp av en randintegralformulering simulera stora system av styva partiklar i tredimensionellt, periodiskt Stokesflöde. Detta ramverk kan lösa flödesekvationerna mycket noggrant, tack vare den inneboende höga noggrannheten hos metoder för numerisk integration på släta ytor. Metoden är också snabb, tack vare den naturliga kopplingen mellan randintegralmetoder och snabba summeringsmetoder.

Utvecklingen av ramverket för partikelsimuleringar täcker ett brett spektrum av ämnet numerisk analys. För snabba beräkningar på stora system används en snabb Ewaldsummeringsmetod vid namn spektral Ewald. Denna metod har anpassats för att fungera med den randintegralformulering för Stokesflöde som används. För noggrann numerisk integration används en metod kallad expansionskvadratur (eng. Quadrature by Expansion), som också har utvecklats för att passa samma Stokesformulering. Denna metod har även gjorts snabbare genom en nyutvecklad metod baserad på geometriska symmetrier. För att bättre förstå kvadraturmetodens inneboende fel har en analys baserad på konturintegraler och residykalkyl utförts, vilket har resulterat i väldigt noggranna felestimat.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2016. 51 p.
Series
TRITA-MAT-A, 2016:03
National Category
Computational Mathematics
Research subject
Applied and Computational Mathematics
Identifiers
urn:nbn:se:kth:diva-185758 (URN)978-91-7595-962-7 (ISBN)
Public defence
2016-06-02, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Research Council, 2011-3178Swedish Research Council, 2007-6375
Note

QC 20160427

Available from: 2016-04-27 Created: 2016-04-26 Last updated: 2016-04-27Bibliographically approved

Open Access in DiVA

fulltext(410 kB)75 downloads
File information
File name FULLTEXT01.pdfFile size 410 kBChecksum SHA-512
f60bde91f3bd45b33552338b2ad50b38ffd759c83caa1d250bb90417c4edda9fbb9d66da86718942d76d09f33bfb02f0519b937bc4031b3472fc5d161630d79c
Type fulltextMimetype application/pdf

Other links

arXiv

Authority records BETA

af Klinteberg, Ludvig

Search in DiVA

By author/editor
af Klinteberg, Ludvig
By organisation
Numerical Analysis, NA
Fluid Mechanics and AcousticsComputational Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 75 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 220 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf