Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Influence of Histidine-Containing Tags on the Biodistribution of ADAPT Scaffold Proteins.
KTH, School of Biotechnology (BIO), Protein Technology.
KTH, School of Biotechnology (BIO), Protein Technology.ORCID iD: 0000-0003-4008-5275
Show others and affiliations
2016 (English)In: Bioconjugate chemistry, ISSN 1043-1802, E-ISSN 1520-4812, Vol. 27, no 3, 716-726 p.Article in journal (Refereed) Published
Abstract [en]

Engineered scaffold proteins (ESP) are high-affinity binders that can be used as probes for radionuclide imaging. Histidine-containing tags enable both efficient purification of ESP and radiolabeling with (99m)Tc(CO)3. Earlier studies demonstrated that the use of a histidine-glutamate-histidine-glutamate-histidine-glutamate (HE)3-tag instead of the commonly used hexahistidine (H6)-tag reduces hepatic uptake of radiolabeled ESP and short peptides. Here, we investigated the influence of histidine-containing tags on the biodistribution of a novel type of ESP, ADAPTs. A series of anti-HER2 ADAPT probes having H6- or (HE)3-tags in the N-termini were prepared. The constructs, (HE)3-ADAPT6 and H6-ADAPT6, were labeled with two different nuclides, (99m)Tc or (111)In. The labeling with (99m)Tc(CO)3 utilized the histidine-containing tags, while (111)In was attached through a maleimido derivative of DOTA conjugated to the N-terminus. For (111)In-labeled ADAPTs, the use of (HE)3 provided a significantly (p < 0.05) lower hepatic uptake at 1 h after injection, but there was no significant difference in hepatic uptake of (111)In-(HE)3-ADAPT6 and H6-ADAPT6 at later time points. Interestingly, in the case of (99m)Tc, (99m)Tc(CO)3-H6-ADAPT6 provided significantly (p < 0.05) lower uptake in a number of normal tissues and was more suitable as an imaging probe. Thus, the influence of histidine-containing tags on the biodistribution of the novel ADAPT scaffold proteins was different compared to its influence on other ESPs studied so far. Apparently, the effect of a histidine-containing tag on the biodistribution is highly dependent on the scaffold composition of the ESP.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2016. Vol. 27, no 3, 716-726 p.
National Category
Biological Sciences Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-184209DOI: 10.1021/acs.bioconjchem.5b00677ISI: 000372478600026PubMedID: 26781756Scopus ID: 2-s2.0-84962209236OAI: oai:DiVA.org:kth-184209DiVA: diva2:915597
Funder
Swedish Cancer Society, CAN 2015/350Swedish Research Council, 2015-02353 621-2012-5088
Note

QC 20160405

Available from: 2016-03-30 Created: 2016-03-30 Last updated: 2016-04-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Lindbo, SarahGarousi, JavadÅstrand, MikaelHober, Sophia
By organisation
Protein Technology
In the same journal
Bioconjugate chemistry
Biological SciencesChemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 67 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf