Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Fast and Memory-Efficient Topological Denoising of 2D and 3D Scalar Fields
Show others and affiliations
2014 (English)In: IEEE Transactions on Visualization and Computer Graphics, ISSN 1077-2626, E-ISSN 1941-0506, Vol. 20, no 12, 2585-2594 p.Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

Data acquisition, numerical inaccuracies, and sampling often introduce noise in measurements and simulations. Removing this noise is often necessary for efficient analysis and visualization of this data, yet many denoising techniques change the minima and maxima of a scalar field. For example, the extrema can appear or disappear, spatially move, and change their value. This can lead to wrong interpretations of the data, e.g., when the maximum temperature over an area is falsely reported being a few degrees cooler because the denoising method is unaware of these features. Recently, a topological denoising technique based on a global energy optimization was proposed, which allows the topology-controlled denoising of 2D scalar fields. While this method preserves the minima and maxima, it is constrained by the size of the data. We extend this work to large 2D data and medium-sized 3D data by introducing a novel domain decomposition approach. It allows processing small patches of the domain independently while still avoiding the introduction of new critical points. Furthermore, we propose an iterative refinement of the solution, which decreases the optimization energy compared to the previous approach and therefore gives smoother results that are closer to the input. We illustrate our technique on synthetic and real-world 2D and 3D data sets that highlight potential applications.

Place, publisher, year, edition, pages
IEEE Computer Society, 2014. Vol. 20, no 12, 2585-2594 p.
National Category
Computer Science
Research subject
Computer Science; SRA - E-Science (SeRC)
Identifiers
URN: urn:nbn:se:kth:diva-184825DOI: 10.1109/TVCG.2014.2346432Scopus ID: 2-s2.0-84909636706OAI: oai:DiVA.org:kth-184825DiVA: diva2:916922
Note

QC 20160418

Available from: 2016-04-05 Created: 2016-04-05 Last updated: 2016-04-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopushttp://www.csc.kth.se/~weinkauf/publications/absguenther14c.html

Search in DiVA

By author/editor
Weinkauf, Tino
In the same journal
IEEE Transactions on Visualization and Computer Graphics
Computer Science

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 14 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf