Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Atomic structure of amorphous nanosized silicon powders upon thermal treatment
1996 (English)In: Physical Review B Condensed Matter, ISSN 0163-1829, E-ISSN 1095-3795, Vol. 54, no 4, 2856-2862 p.Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

Amorphous silicon powders prepared by plasma-enhanced chemical vapor deposition, of 8-24-nm-sized particles agglomerated into larger aggregates were annealed in a reducing atmosphere to study the phase transformation behavior of these particles. High-resolution electron microscopy revealed a very rough surface, with structural details of 1 to 2 nm, of the as-prepared single powder particles. Upon l h annealing at temperatures between 300 and 600 °C circular contrast features, 1.5-2.5 nm in size, are observed in the amorphous particles, hinting to the formation of a medium-range order. A distinct onset of crystallization is achieved at 700 °C, with structures ranging from very small crystalline ordered regions of 2.5-3.5 nm in size, to fast-grown multiply twinned crystallites. Rapid progress of crystallization, mainly caused by growth twinning, is observed upon annealing at 800 °C. At 900 °C, almost completely crystalline particles are formed. The particles having lattice characteristics of diamond cubic silicon frequently exhibit a faulted structure, because of multiple twinning events. They are covered by an amorphous oxide shell of a 1.5 to 2 nm thickness, which is found to develop with the onset of crystallization. Size and surface roughness of the as-prepared powders are widely preserved throughout all stages of heating, and practically no sintering occurs up to 900 °C.

Place, publisher, year, edition, pages
1996. Vol. 54, no 4, 2856-2862 p.
National Category
Nano Technology
Identifiers
URN: urn:nbn:se:kth:diva-182945Scopus ID: 2-s2.0-0000148534OAI: oai:DiVA.org:kth-182945DiVA: diva2:918272
Note

NR 20160422

Available from: 2016-04-11 Created: 2016-02-24 Last updated: 2016-04-22Bibliographically approved

Open Access in DiVA

No full text

Other links

Scopushttp://dx.doi.org/10.1103/PhysRevB.54.2856

Search in DiVA

By author/editor
Dutta, J.
In the same journal
Physical Review B Condensed Matter
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar

Total: 21 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf