Change search
ReferencesLink to record
Permanent link

Direct link
Synthesis and electrical characterization of multilayer thin films designed by Layer-by-Layer self assembly of nanoparticles
School of Engineering and Technology, Asian Institute of Technology, Thailand.ORCID iD: 0000-0002-0074-3504
2010 (English)In: Journal of Nano Research, ISSN 1662-5250, Vol. 11, 1-6 p.Article in journal (Refereed) Published
Abstract [en]

In this work, we report the directed self organization of multilayer thin film devices with colloidal nanoparticles through Layer-by-Layer (LbL) technique [1]. Self-organization of nanoparticles into assemblies to create novel nanostructures is getting increasing research attention in microelectronics, medical, energy and environmental applications. Directed self-organization of nanoparticles [2] into multilayer thin films were achieved by LbL growth through the interaction of oppositely charged of colloidal nanoparticles on substrates of any kind and shapes. Multilayer thin film devices were fabricated using multilayers of gold (conducting) nanoparticles separated by a dielectric nanoparticulate layer of zinc sulphide. The thin films obtained have been studied extensively and the changes in surface morphology, the optical absorption characteristics, thickness, uniformity, adhesion, and conduction behavior are reported. Current voltage (I-V) characteristics of multilayer devices with an increasing number of deposition cycles show an initial current blockade until an onset voltage value, which increases linearly upon the additional layers stacked in devices [3]. A conductive behavior of the device was observed upon exceeding the onset voltage. Moreover, I-V behavior showed that the conduction onset voltage increases linearly depending on the numbers of layers in the final device controlled by the deposition cycles. Systematic I-V characteristics in the forward and reverse biased conditions demonstrated rectifying behaviors in the onset of conduction voltage which makes these films attractive for future electronic device applications.

Place, publisher, year, edition, pages
Trans Tech Publications Inc., 2010. Vol. 11, 1-6 p.
National Category
Nano Technology
URN: urn:nbn:se:kth:diva-175241DOI: 10.4028/ 000278628400002ScopusID: 2-s2.0-77952695156OAI: diva2:918304

QC 20160414

Available from: 2016-04-11 Created: 2015-10-10 Last updated: 2016-04-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Dutta, Joydeep
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 9 hits
ReferencesLink to record
Permanent link

Direct link