Change search
ReferencesLink to record
Permanent link

Direct link
Tin dioxide nano-powders for gas sensor applications
Show others and affiliations
1998 (English)In: Materials Research Society Symposium - Proceedings, 1998, 41-46 p.Conference paper (Refereed)Text
Abstract [en]

SnO2 nanoparticles are of interest for gas sensor applications because the surface area is much larger compared to conventional powders. Thus, interactions between the material and the gases, which occur on the surface sites of the particles, are increased considerably. The preparation of SnO2 powders has been investigated following two forced precipitation systems: the hydrolysis reaction of SnCl4 in an emulsion media and the hydrolysis reaction of Sn2+ in the presence of a complexing ligand (CH3COO-). Spherical nanoparticles in the 10 to 100 nm range and with a narrow size distribution were synthesized by both precipitating routes. In both cases, it has been demonstrated that the most important parameter which controlled the particle size was the nature of the associated union. When this associated union or ligand is able to form a strong complex with the colloidal subunits, a barrier against Van der Waals attraction is created which results in little growth. This greatly influences the agglomeration/growth kinetics during the precipitation. The effect of acetate chelating ligands which resulted in the SnO2 nano-powders formed of 5-10 nm crystallites will be presented and discussed. Preliminary results on the gas (N2, NO) adsorption studies on pellets formed from these powders are also presented.

Place, publisher, year, edition, pages
1998. 41-46 p.
Keyword [en]
Agglomeration, Chemical sensors, Crystal growth, Gas adsorption, Hydrolysis, Nanostructured materials, Particle size analysis, Powders, Precipitation (chemical), Van der Waals forces, Tin dioxide, Tin compounds
National Category
Nano Technology
URN: urn:nbn:se:kth:diva-182937ScopusID: 2-s2.0-0031681670OAI: diva2:918325
Warrendale, PA, United States, Proceedings of the 1997 MRS Fall Symposium, 30 November 1997 through 3 December 1997, Boston, MA, USA

QC 20160413

Available from: 2016-04-11 Created: 2016-02-24 Last updated: 2016-04-13Bibliographically approved

Open Access in DiVA

No full text


Search in DiVA

By author/editor
Dutta, Joydeep
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 3 hits
ReferencesLink to record
Permanent link

Direct link