Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Removal and regrowth inhibition of microalgae using visible light photocatalysis with ZnO nanorods: a green technology
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.ORCID iD: 0000-0002-0074-3504
2016 (English)In: Separation and Purification Technology, ISSN 1383-5866, E-ISSN 1873-3794, Vol. 162, 61-67 p.Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

Algal biofouling can be a major problem during membrane filtration processes reducing membrane efficiency. Removal of microalgae by visible light photocatalysis using zinc oxide (ZnO) nanorods was studied in this work. ZnO nanorods were grown on polypropylene support substrates. The treatment unit was constructed by incorporating ZnO nanocoated substrates in a glass tube. Anti-algal activity of the treatment units were tested using green microalga, Dunaliella salina, of 107 cells/mL concentration, which is higher than the concentration of cells during algal blooms. Nearly total algal cell inactivation was achieved within 2 h of continuous visible light illumination in the presence of nanocoated support substrates, as determined by flow cytometry analysis (98%) and trypan blue staining (95%). Uncoated support substrate under light illumination did not lead to algal cell mortality (1.7%). Complete inhibition of any regrowth of algal cells treated with nanocoated substrates was confirmed as no significant changes in the total number of cells were observed even after 2 weeks of incubation of the treated culture. The anti-algal activity of ZnO nanorods was attributed to the formation of reactive oxygen species (ROS) through photocatalytic processes. ZnO nanorod coated substrates used in the treatment units could be a suitable green method to control membrane fouling in water treatment plants avoiding the utilisation of harmful chemicals.

Place, publisher, year, edition, pages
Elsevier, 2016. Vol. 162, 61-67 p.
Keyword [en]
Anti algal, Pre-treatment, Zinc oxide, Nanorods, Photocatalysis
National Category
Nano Technology
Identifiers
URN: urn:nbn:se:kth:diva-185134DOI: 10.1016/j.seppur.2016.02.007ISI: 000372937400009Scopus ID: 2-s2.0-84957824914OAI: oai:DiVA.org:kth-185134DiVA: diva2:918341
Note

QC 20160418

Available from: 2016-04-11 Created: 2016-04-11 Last updated: 2017-01-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Dutta, Joydeep
By organisation
Functional Materials, FNM
In the same journal
Separation and Purification Technology
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 42 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf