Change search
ReferencesLink to record
Permanent link

Direct link
Intracranial hemorrhage alters scalp potential distribution in bioimpedance cerebral monitoring: Preliminary results from FEM simulation on a realistic head model and human subjects
KTH, School of Technology and Health (STH). Harvard Medical School, United States.ORCID iD: 0000-0002-0928-8501
KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems. University of Boras, Sweden .ORCID iD: 0000-0002-6995-967X
Show others and affiliations
2016 (English)In: Medical physics (Lancaster), ISSN 0094-2405, Vol. 43, no 2, 675-686 p.Article in journal (Refereed) PublishedText
Abstract [en]

Purpose: Current diagnostic neuroimaging for detection of intracranial hemorrhage (ICH) is limited to fixed scanners requiring patient transport and extensive infrastructure support. ICH diagnosis would therefore benefit from a portable diagnostic technology, such as electrical bioimpedance (EBI). Through simulations and patient observation, the authors assessed the influence of unilateral ICH hematomas on quasisymmetric scalp potential distributions in order to establish the feasibility of EBI technology as a potential tool for early diagnosis. Methods: Finite element method (FEM) simulations and experimental left right hemispheric scalp potential differences of healthy and damaged brains were compared with respect to the asymmetry caused by ICH lesions on quasisymmetric scalp potential distributions. In numerical simulations, this asymmetry was measured at 25 kHz and visualized on the scalp as the normalized potential difference between the healthy and ICH damaged models. Proof-of-concept simulations were extended in a pilot study of experimental scalp potential measurements recorded between 0 and 50 kHz with the authors' custom-made bioimpedance spectrometer. Mean left right scalp potential differences recorded from the frontal, central, and parietal brain regions of ten healthy control and six patients suffering from acute/subacute ICH were compared. The observed differences were measured at the 5% level of significance using the two-sample Welch t test. Results: The 3D-anatomically accurate FEM simulations showed that the normalized scalp potential difference between the damaged and healthy brain models is zero everywhere on the head surface, except in the vicinity of the lesion, where it can vary up to 5%. The authors' preliminary experimental results also confirmed that the left right scalp potential difference in patients with ICH (e.g., 64 mV) is significantly larger than in healthy subjects (e.g., 20.8 mV; P < 0.05). Conclusions: Realistic, proof-of-concept simulations confirmed that ICH affects quasisymmetric scalp potential distributions. Pilot clinical observations with the authors' custom-made bioimpedance spectrometer also showed higher left right potential differences in the presence of ICH, similar to those of their simulations, that may help to distinguish healthy subjects from ICH patients. Although these pilot clinical observations are in agreement with the computer simulations, the small sample size of this study lacks statistical power to exclude the influence of other possible confounders such as age, sex, and electrode positioning. The agreement with previously published simulation-based and clinical results, however, suggests that EBI technology may be potentially useful for ICH detection.

Place, publisher, year, edition, pages
American Association of Physicists in Medicine , 2016. Vol. 43, no 2, 675-686 p.
Keyword [en]
scalp equipotential lines, bioimpedance, intracranial hemorrhage, prehospital triage, FEM simulations
National Category
Radiology, Nuclear Medicine and Medical Imaging
URN: urn:nbn:se:kth:diva-185083DOI: 10.1118/1.4939256ISI: 000372030000009PubMedID: 26843231ScopusID: 2-s2.0-84955480861OAI: diva2:919698

QC 20160414

Available from: 2016-04-14 Created: 2016-04-11 Last updated: 2016-04-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Atefi, Seyed RezaSeoane, Fernando
By organisation
School of Technology and Health (STH)Medical sensors, signals and systems
In the same journal
Medical physics (Lancaster)
Radiology, Nuclear Medicine and Medical Imaging

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 44 hits
ReferencesLink to record
Permanent link

Direct link