Change search
ReferencesLink to record
Permanent link

Direct link
A model for gas phase mass transport on the porous nickel electrode in the molten carbonate electrolysis cell
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.ORCID iD: 0000-0001-9203-9313
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.ORCID iD: 0000-0002-2268-5042
(English)Manuscript (preprint) (Other academic)
Abstract [en]

A one-dimensional model based on the Maxwell-Stefan diffusion equations was applied to evaluate the effect of the reverse water-gas shift reaction and the influence of the gas phase mass transport on the performance of the porous nickel electrode in the molten carbonate electrolysis cell. The concentration gradients in the current collector are larger than in the electrode for the inlet gases not in equilibrium, due to the shift reaction taking place in the electrode. When the humidified gas compositions enter the current collector, the decrease of the shift reaction rate increases the electrode performance. The model well describes the polarization behavior of the Ni electrode in the electrolysis cell when the inlet gases have low contents of hydrogen. The mass-transfer limitations at low contents of water and carbon dioxide are captured in the model, but the effect on the electrode polarization, especially of carbon dioxide, is overestimated. Despite an overestimation in the calculations, the experimental data and the modeling results are still consistent in that carbon dioxide has a stronger effect on the gas phase mass transport than other components, i.e. water and hydrogen.

National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-185432OAI: oai:DiVA.org:kth-185432DiVA: diva2:920577
Note

QC 20160419

Available from: 2016-04-18 Created: 2016-04-18 Last updated: 2016-04-20Bibliographically approved
In thesis
1. Molten carbonate fuel cells for electrolysis
Open this publication in new window or tab >>Molten carbonate fuel cells for electrolysis
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The molten carbonate fuel cell has evolved to current megawatt-scale commercial power plants. When using the fuel cell for electrolysis, it provides a promising option for producing fuel gases such as hydrogen and syngas. The cell can thereby operate reversibly as a dual energy converter for electricity generation and fuel gas production. The so-called reversible molten carbonate fuel cell will probably increase the usefulness of the system and improve the economic benefits.

This work has investigated the performance and durability of the cell in electrolysis and reversible operations. A lower polarization loss is found for the electrolysis cell than for the fuel cell, mainly due to the NiO electrode performing better in the MCEC. The stability of the cell in long-term tests evidences the feasibility of the MCEC and the RMCFC using a conventional fuel cell set-up, at least in lab-scale.

This study elucidates the electrode kinetics of hydrogen production and oxygen production. The experimentally obtained partial pressure dependencies for hydrogen production are high, and they do not reasonably satisfy the reverse pathways of the hydrogen oxidation mechanisms. The reverse process of an oxygen reduction mechanism in fuel cell operation is found to suitably describe oxygen production in the MCEC.

To evaluate the effect of the reverse water-gas shift reaction and the influence of the gas phase mass transport on the porous Ni electrode in the electrolysis cell, a mathematical model is applied in this study. When the humidified inlet gas compositions enter the current collector the decrease of the shift reaction rate increases the electrode performance. The model well describes the polarization behavior of the Ni electrode when the inlet gases have low contents of reactants. The experimental data and modeling results are consistent in that carbon dioxide has a stronger effect on the gas phase mass transport than other components, i.e. water and hydrogen.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2016. 57 p.
Series
TRITA-CHE-Report, ISSN 1654-1081 ; 2016:18
Keyword
Durability, electrode kinetics, gas phase mass transport, molten carbonate electrolysis cell, molten carbonate fuel cell, performance, reversible.
National Category
Chemical Sciences
Research subject
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-185433 (URN)978-91-7595-928-3 (ISBN)
Public defence
2016-05-20, Kollegiesalen, Brinellvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20160419

Available from: 2016-04-20 Created: 2016-04-18 Last updated: 2016-04-20Bibliographically approved

Open Access in DiVA

fulltext(1458 kB)2 downloads
File information
File name FULLTEXT01.pdfFile size 1458 kBChecksum SHA-512
66971fed1350c5f3c48f14310ef7fe80d814db0dca85b167b25b9933f2e71010be145fd11af82aabf1fde97fec1dfcf40fa290a1e957e998dd032889ffb93baf
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Hu, LanEkström, HenrikLindbergh, GöranLagergren, Carina
By organisation
Applied Electrochemistry
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 2 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 41 hits
ReferencesLink to record
Permanent link

Direct link