CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt148",{id:"formSmash:upper:j_idt148",widgetVar:"widget_formSmash_upper_j_idt148",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt149_j_idt151",{id:"formSmash:upper:j_idt149:j_idt151",widgetVar:"widget_formSmash_upper_j_idt149_j_idt151",target:"formSmash:upper:j_idt149:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Dimension filtration, sequential Cohen-Macaulayness and a new polynomial invariant of graded algebrasPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2016 (English)In: Journal of Algebra, ISSN 0021-8693, E-ISSN 1090-266X, Vol. 456, 250-265 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Academic Press, 2016. Vol. 456, 250-265 p.
##### Keyword [en]

Sequential Cohen-Macaulayness, Hilbert series, Initial ideal, Extremal Betti numbers
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-186125DOI: 10.1016/j.jalgebra.2016.01.045ISI: 000375237300011Scopus ID: 2-s2.0-84960890577OAI: oai:DiVA.org:kth-186125DiVA: diva2:925571
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt450",{id:"formSmash:j_idt450",widgetVar:"widget_formSmash_j_idt450",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt456",{id:"formSmash:j_idt456",widgetVar:"widget_formSmash_j_idt456",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt462",{id:"formSmash:j_idt462",widgetVar:"widget_formSmash_j_idt462",multiple:true});
##### Note

##### In thesis

Let k be a field and let A be a standard N-graded k-algebra. Using numerical information of some invariants in the primary decomposition of 0 in A, namely the so-called dimension filtration, we associate a bivariate polynomial BW(A;t,w), that we call the Björner-Wachs polynomial, to A.It is shown that the Björner-Wachs polynomial is an algebraic counterpart to the combinatorially defined h-triangle of finite simplicial complexes introduced by Björner & Wachs. We provide a characterisation of sequentially Cohen-Macaulay algebras in terms of the effect of the reverse lexicographic generic initial ideal on the Björner-Wachs polynomial. More precisely, we show that a graded algebra is sequentially Cohen-Macaulay if and only if it has a stable Björner-Wachs polynomial under passing to the reverse lexicographic generic initial ideal. We conclude by discussing some connections with the Hilbert series of local cohomology modules, extremal Betti numbers and combinatorial Alexander duality.

QC 20160509

Available from: 2016-05-02 Created: 2016-05-02 Last updated: 2016-05-30Bibliographically approved1. Topological and Shifting Theoretic Methods in Combinatorics and Algebra$(function(){PrimeFaces.cw("OverlayPanel","overlay925608",{id:"formSmash:j_idt728:0:j_idt732",widgetVar:"overlay925608",target:"formSmash:j_idt728:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1198",{id:"formSmash:lower:j_idt1198",widgetVar:"widget_formSmash_lower_j_idt1198",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1199_j_idt1201",{id:"formSmash:lower:j_idt1199:j_idt1201",widgetVar:"widget_formSmash_lower_j_idt1199_j_idt1201",target:"formSmash:lower:j_idt1199:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});