Change search
ReferencesLink to record
Permanent link

Direct link
Coagulation Behavior of Graphene Oxide on Nanocrystallined Mg/AI Layered Double Hydroxides: Batch Experimental and Theoretical Calculation Study
Show others and affiliations
2016 (English)In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 50, no 7, 3658-3667 p.Article in journal (Refereed) PublishedText
Abstract [en]

Graphene oxide (GO) has attracted considerable attention because of its remarkable enhanced adsorption and multifunctional properties. However, the toxic properties of GO nanosheets released into the environment could lead to the instability of biological system. In aqueous phase, GO may interact with fine mineral particles, such as chloridion intercalated nanocrystallined Mg/Al layered double hydroxides (LDH-Cl) and nanocrystallined Mg/Al LDHs (LDH CO3), which are considered as coagulant molecules for the coagulation and removal of GO from aqueous solutions. Herein the coagulation of GO on LDHs were studied as a function of solution pH, ionic strength, contact time, temperature and coagulant concentration. The presence of LDH Cl and LDH-CO3 improved the coagulation of GO in solution efficiently, which was mainly attributed to the surface oxygen-containing functional groups of LDH Cl and LDH-CO3 occupying the binding sites of GO. The coagulation of GO by LDH-CI and LDH-CO3 was strongly dependent on pH and ionic strength. Results of coagulation of GO on LDHs was energetically favored by electrostatic interactions and hydrogen bonds, which was further evidenced by FTIR and XPS analysis. By integrating the experimental results, it was clear that LDH Cl could be potentially used as a cost-effective coagulant for the elimination of GO from aqueous solutions, which could efficiently decrease the potential toxicity of GO in the natural environment.

Place, publisher, year, edition, pages
2016. Vol. 50, no 7, 3658-3667 p.
National Category
Environmental Sciences
URN: urn:nbn:se:kth:diva-185979DOI: 10.1021/acs.est.6b00255ISI: 000373655800043PubMedID: 26978487ScopusID: 2-s2.0-84964240157OAI: diva2:926240

QC 20160504

Available from: 2016-05-04 Created: 2016-04-29 Last updated: 2016-05-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Ji, Yongfei
By organisation
Theoretical Chemistry and Biology
In the same journal
Environmental Science and Technology
Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 4 hits
ReferencesLink to record
Permanent link

Direct link