Change search
ReferencesLink to record
Permanent link

Direct link
Four similar surfaces with different feel – a tactile study on adhesion, friction, Young’s modulus and thermal conductivity
KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).ORCID iD: 0000-0003-2489-0688
2016 (English)Manuscript (preprint) (Other academic)
Abstract [en]

Even surfaces that look the same and have the same topography have a different feel to them. How is this difference related to material properties? In this paper four surfaces (aluminosilicate glass, soda‑lime glass, polycarbonate and polyurethane) were evaluated by a test panel. The purpose was to study whether the panel could distinguish different material parameters, in particular the adhesion. Results showed that the test panel could sense differences in thermal conductivity, Young’s modulus and adhesion. The results also showed that the measured friction coefficients did not correspond to the test panels’ subjective opinion, unlike the perceived and measured adhesion force.

Place, publisher, year, edition, pages
2016.
Keyword [en]
finger, friction, tactility, adhesion, biotribology
National Category
Mechanical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-183996OAI: oai:DiVA.org:kth-183996DiVA: diva2:926280
Note

QC 20160509

Available from: 2016-05-05 Created: 2016-03-22 Last updated: 2016-05-09Bibliographically approved
In thesis
1. Adhesion and Friction - a Study on Tactility
Open this publication in new window or tab >>Adhesion and Friction - a Study on Tactility
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Although we are surrounded by hundreds of surfaces we can still distinguish them from each other simply by touch. The tactile information, interpreted by our brain and given by our fingers, is precise, but to put words to the sensation is very difficult — is it smooth, sticky or harsh? We do not only perceive surfaces differently, we also describe them in our own way. Luckily the forces and deformations that the skin are exposed to when sliding over a surface is ruled by laws of nature.

This thesis investigates the contact between finger and surface and how it is affected by, for example, material properties, surface texturing or changes in climate. By measuring contact area, friction coefficient, and adhesion, using different materials and under different conditions, conclusions could be drawn. Also, a model for the contact between a finger and a sinus­oidal surface was developed, which could be used to estimate contact area, deformation and resulting friction coefficient.

Results showed how differences in for example material, surface topography and environ­ment affect the interaction between finger and surface, and what consequences it has. If the objective is to change the feel of a surface or to alter the grip, this thesis could work as a support.

Paper A investigates the area and friction between finger and glass surface under different conditions.

Paper B presents a model for the contact area and deformation for a finger in contact with a sinusoidal surface.

Paper C is a validation of the contact area model. Here it was used on new surfaces and compared with new finger friction measurements.

Paper D mainly examines whether the adhesion or stickiness of different surfaces is distinguishable by a test panel and how this affects the perceived pleasantness of the surface.

Paper E relates to the adhesion and friction for a bioskin probe and skin. Tests were made to evaluate how an artificial probe can be used to evaluate the tactile properties of a surface.

Abstract [sv]

Även om vi omges av hundratals olika ytor kan vi fortfarande skilja dem åt med hjälp av känseln. Den taktila informationen från fingertopparna som tolkas av hjärnan är precis, men att sätta ord på hur ytan känns är väldigt svårt. Len, sträv eller grov? Vi upplever inte bara ytorna olika utan beskriver dem också på olika sätt. Krafterna och deformationerna som huden utsätts för när den glider över en yta styrs dock av naturlagar.

Denna avhandling utreder kontakten mellan fingertopp och yta och hur den påverkas av exempelvis materialval, ytstruktur eller förändringar i klimat. Genom mäta kontaktarea, friktionskoefficient och adhesion för olika material i varierande omgivning kunde slutsatser dras. En modell för kontakten mellan fingertopp och sinusformad yta togs fram vilken kunde användas till att uppskatta kontaktarea, deformation och resulterande friktionskoefficient.

Resultaten visade hur skillnader i exempelvis material, yttopografi och omgivning påverkar kontakten mellan finger och yta och vilka kon­sekvenser detta får. Om målet är att förändra känslan eller friktionen för en yta kan denna avhandling fungera som stöd.

Artikel A undersöker kontakten och friktionen mellan fingertopp och glasyta för olika förhållanden.

Artikel B presenterar en modell för arean och deformationen som sker för fingertopp och sinusformad yta i kontakt.

Artikel C är en validering av modellen. Här användes den för nya ytor och jämfördes med nya mätningar av fingerfriktion.

Artikel D undersöker i huvudsak huruvida en testpanel kan särskilja adhesionen för olika ytor och hur detta påverkar hur den känns.

Artikel E arbetar vidare med adhesion och undersöker och hur en testkropp av artificiell hud kan användas för adhesionsmätningar av en yta. Detta för att med relativt enkla mätningar kunna uppskatta ytans taktila egenskaper.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2016. xii, 42 p.
Series
TRITA-MMK, ISSN 1400-1179 ; 2016:03
Keyword
Adhesion, finger, friction, humidity, material, model, tactile friction, tactility
National Category
Mechanical Engineering
Research subject
Machine Design
Identifiers
urn:nbn:se:kth:diva-186208 (URN)978-91-7595-955-9 (ISBN)
Public defence
2016-05-27, F3, Lindstedtsvägen 26, KTH Campus, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 20160504

Available from: 2016-05-09 Created: 2016-05-04 Last updated: 2016-05-09Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Duvefelt, KennethOlofsson, Ulf
By organisation
Machine Design (Dept.)
Mechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 12 hits
ReferencesLink to record
Permanent link

Direct link