References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt152",{id:"formSmash:upper:j_idt152",widgetVar:"widget_formSmash_upper_j_idt152",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt153_j_idt156",{id:"formSmash:upper:j_idt153:j_idt156",widgetVar:"widget_formSmash_upper_j_idt153_j_idt156",target:"formSmash:upper:j_idt153:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

A study of finite-size and non-perturbative effects on the van der Waals and the Casimir-Polder forcesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2016 (English)Licentiate thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm: KTH Royal Institute of Technology, 2016. , 58 p.
##### Keyword [en]

finite-size effects, non-perturbative theory, van der Waals and Casimir Polder forces
##### National Category

Physical Sciences
##### Research subject

Materials Science and Engineering
##### Identifiers

URN: urn:nbn:se:kth:diva-186225ISBN: 978-91-7595-981-8OAI: oai:DiVA.org:kth-186225DiVA: diva2:926289
##### Presentation

2016-05-23, N111 Kuben, MSE ITM, Brinellvägen 23, KTH-Campus, Stockholm, 13:15 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt455",{id:"formSmash:j_idt455",widgetVar:"widget_formSmash_j_idt455",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt461",{id:"formSmash:j_idt461",widgetVar:"widget_formSmash_j_idt461",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt467",{id:"formSmash:j_idt467",widgetVar:"widget_formSmash_j_idt467",multiple:true});
##### Note

##### List of papers

This licentiate thesis addresses two important aspects of the van der Waals and the Casimir-Polder ground-state and excited-state (resonance) interactions between two atoms or molecules. The first is the finite-size effect and the second is the non-perturbative effect. Going beyond the usual assumption of atoms and molecules as point particles and adopting a description of finite size, the divergence inherent in such interaction energies in the limit of zero separation distance between the two interacting atoms or molecules is removed. The attainment of finite interaction energy at such close separation distance facilitates the estimation of van der Waals force contribution to the binding energy of the molecules, and towards surfaces. This is particularly important for noble atoms. We investigate in detail for a pair of helium (He) atoms and krypton (Kr) atoms, and for a pair of methane (CH_{4}) molecules considering its environmental importance. The application of finite size further leads to finite self energies of the atoms. The expression of the interaction energy, as is discussed in detail in this thesis, typically contains a logarithmic factor of the form ln(1-x). Formerly, in evaluating the interaction energies, this factor is customarily series-expanded and truncated in the leading order with certain assumptions. This thesis explores the effect of using the full expression, which we refer to as the non-perturbative (or, the non-expanded) theory, analytically wherever possible as well as numerically. The combined application of the finite-size theory and the non-perturbative theory results in as much as 100% correction in the self energy of atoms in vacuum. This may give rise to significant physical consequences, for example, in the permeabilities of atoms across dielectric membranes. The non-perturbative theory, in addition, exhibits interesting behaviour in the retarded resonance interaction.

QC 20160509

Available from: 2016-05-09 Created: 2016-05-05 Last updated: 2016-05-09Bibliographically approved1. Finite-size-dependent dispersion potentials between atoms and ions dissolved in water$(function(){PrimeFaces.cw("OverlayPanel","overlay738391",{id:"formSmash:j_idt503:0:j_idt507",widgetVar:"overlay738391",target:"formSmash:j_idt503:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Intermolecular Casimir-Polder forces in water and near surfaces$(function(){PrimeFaces.cw("OverlayPanel","overlay760699",{id:"formSmash:j_idt503:1:j_idt507",widgetVar:"overlay760699",target:"formSmash:j_idt503:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Non-perturbative theory of dispersion interactions$(function(){PrimeFaces.cw("OverlayPanel","overlay810601",{id:"formSmash:j_idt503:2:j_idt507",widgetVar:"overlay810601",target:"formSmash:j_idt503:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Nonperturbative theory for the dispersion self-energy of atoms$(function(){PrimeFaces.cw("OverlayPanel","overlay778080",{id:"formSmash:j_idt503:3:j_idt507",widgetVar:"overlay778080",target:"formSmash:j_idt503:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1196",{id:"formSmash:lower:j_idt1196",widgetVar:"widget_formSmash_lower_j_idt1196",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1197_j_idt1199",{id:"formSmash:lower:j_idt1197:j_idt1199",widgetVar:"widget_formSmash_lower_j_idt1197_j_idt1199",target:"formSmash:lower:j_idt1197:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});