Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Examining how unforeseen events affect accuracy and recovery of a non-linear autoregressive neural network in stock market prognoses
KTH, School of Computer Science and Communication (CSC).
KTH, School of Computer Science and Communication (CSC).
2016 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
Undersökning av hur oförutsedda händelser påverkar noggrannhet och återhämtning hos ett icke-linjärt autoregressivt neuronnät i aktiemarknadsprognoser (Swedish)
Abstract [en]

This report studies how a non-linear autoregressive neural network algorithm for stock market value prognoses is affected by unforeseen events. The study attempts to find out the recovery period for said algorithms after an event, and whether the magnitude of the event affects the recovery period.

Tests of 1-day prognoses' deviations from the observed value are carried out on five real stock events and four created simulation sets which exclude the noisy data of the stock market and isolates different kinds of events.

The study concludes that the magnitude has no discernible impact on recovery, and that a sudden event will allow recovery within days regardless of magnitude or change in price development rate. However, less sudden events will cause the recovery period to extend. Noise such as surrounding micro-events, aftershocks, or lingering instability of stock prices will affect accuracy and recovery time significantly.

Abstract [sv]

Denna studie undersöker hur ett icke-linjärt autoregressivt neuronnät för aktiemarknadsprognoser påverkas av oväntade händelser. Studien ämnar finna återhämtningsperioden för nätverket efter en händelse, och ta reda på om den initiala påverkan av händelsen påverkar återhämtningen.

Tester av endagsprognosers avvikelse från det verkliga värdet genomförs på fem verkliga aktier och fyra skapade dataset som exkluderar den omgivande variationen från aktiemarknaden. Dessa simulerade set isolerar därmed specifika typer av händelser.

Studien drar slutsatsen att storleken av händelsen har försumbar betydelse på återhämtningstiden och att plötsliga händelser tillåter återhämtning på några dagar oavsett händelsens ursprungliga storlek eller förändring av prisutvecklingshastighet. Däremot förlänger utdragna händelser återhämtningstiden. Likaså påverkar efterskalv eller kvarvarande instabilitet i prisutvecklingen tillförlitlighet och återhämtningstid avsevärt.

Place, publisher, year, edition, pages
2016.
Keyword [en]
Neural networks, Stock prognosis, Stock analysis
Keyword [sv]
Neuronnät, Neurala nätverk, Aktieprognoser, Aktieanalys
National Category
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-186435OAI: oai:DiVA.org:kth-186435DiVA: diva2:927359
Educational program
Master of Science in Engineering - Computer Science and Technology
Supervisors
Examiners
Available from: 2016-05-18 Created: 2016-05-11 Last updated: 2016-05-18Bibliographically approved

Open Access in DiVA

fulltext(921 kB)67 downloads
File information
File name FULLTEXT01.pdfFile size 921 kBChecksum SHA-512
c583bc2401a09a8930686b22a9c65607f8c4dfe41e549aa44bc6d1a5d456a178cf833b703678afcc9acabb0df8c3f696baa4425c714a8942c8012d08311fe1d9
Type fulltextMimetype application/pdf

By organisation
School of Computer Science and Communication (CSC)
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 67 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 62 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf