Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Forecasting hourly electricity consumption for sets of households using machine learning algorithms
KTH, School of Information and Communication Technology (ICT).
2015 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

To address inefficiency, waste, and the negative consequences of electricity generation, companies and government entities are looking to behavioural change among residential consumers. To drive behavioural change, consumers need better feedback about their electricity consumption. A monthly or quarterly bill provides the consumer with almost no useful information about the relationship between their behaviours and their electricity consumption. Smart meters are now widely dispersed in developed countries and they are capable of providing electricity consumption readings at an hourly resolution, but this data is mostly used as a basis for billing and not as a tool to assist the consumer in reducing their consumption.

One component required to deliver innovative feedback mechanisms is the capability to forecast hourly electricity consumption at the household scale. The work presented by this thesis is an evaluation of the effectiveness of a selection of kernel based machine learning methods at forecasting the hourly aggregate electricity consumption for different sized sets of households. The work of this thesis demonstrates that k-Nearest Neighbour Regression and Gaussian process Regression are the most accurate methods within the constraints of the problem considered. In addition to accuracy, the advantages and disadvantages of each machine learning method are evaluated, and a simple comparison of each algorithms computational performance is made.

Abstract [sv]

För att ta itu med ineffektivitet, avfall, och de negativa konsekvenserna av elproduktion så vill företag och myndigheter se beteendeförändringar bland hushållskonsumenter. För att skapa beteendeförändringar så behöver konsumenterna bättre återkoppling när det gäller deras elförbrukning. Den nuvarande återkopplingen i en månads- eller kvartalsfaktura ger konsumenten nästan ingen användbar information om hur deras beteenden relaterar till deras konsumtion. Smarta mätare finns nu överallt i de utvecklade länderna och de kan ge en mängd information om bostäders konsumtion, men denna data används främst som underlag för fakturering och inte som ett verktyg för att hjälpa konsumenterna att minska sin konsumtion.

En komponent som krävs för att leverera innovativa återkopplingsmekanismer är förmågan att förutse elförbrukningen på hushållsskala. Arbetet som presenteras i denna avhandling är en utvärdering av noggrannheten hos ett urval av kärnbaserad maskininlärningsmetoder för att förutse den sammanlagda förbrukningen för olika stora uppsättningar av hushåll. Arbetet i denna avhandling visar att "k-Nearest Neighbour Regression" och "Gaussian Process Regression" är de mest exakta metoder inom problemets begränsningar. Förutom noggrannhet, så görs en utvärdering av fördelar, nackdelar och prestanda hos varje maskininlärningsmetod.

Place, publisher, year, edition, pages
2015. , 75 p.
Series
TRITA-ICT-EX, 2015:200
Keyword [en]
machine learning, kernel methods, k-nearest neighbour, kernel ridge regression, gaussian processes, support vector regression, electricity, forecasting
National Category
Computer and Information Science
Identifiers
URN: urn:nbn:se:kth:diva-186592OAI: oai:DiVA.org:kth-186592DiVA: diva2:927793
Examiners
Available from: 2016-05-13 Created: 2016-05-13 Last updated: 2016-05-13Bibliographically approved

Open Access in DiVA

fulltext(5269 kB)281 downloads
File information
File name FULLTEXT01.pdfFile size 5269 kBChecksum SHA-512
e00d15aac8e987260760f9b36d8f5572c6e737f4358efe552d6f127f72e4a2beb80a57b26562a843a18cb7989bc4f3a2bcf292624291ba90ab408563a5edbbdc
Type fulltextMimetype application/pdf

By organisation
School of Information and Communication Technology (ICT)
Computer and Information Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 281 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 262 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf