Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Evaluating mobile edge-computing on base stations: Case study of a sign recognition application
KTH, School of Information and Communication Technology (ICT).
2015 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Mobile phones have evolved from feature phones to smart phones with processing power that can compete with personal computers ten years ago. Nevertheless, the computing power of personal computers has also multiplied in the past decade. Consequently, the gap between mobile platforms and personal computers and servers still exists. Mobile Cloud Computing (MCC) has emerged as a paradigm that leverages this difference in processing power. It achieve this goal by augmenting smart phones with resources from the cloud, including processing power and storage capacity. Recently, Mobile Edge Computing (MEC) has brought the benefits from MCC one hop away from the end user. Furthermore, it also provides additional advantages, e.g., access to network context information, reduced latency, and location awareness.

This thesis explores the advantages provided by MEC in practice by augmenting an existing application called Human-Centric Positioning System (HoPS). HoPS is a system that relies on context information and information extracted from a photograph of signposts to estimate a user's location. This thesis presents the challenges of enabling HoPS in practice, and implement strategies that make use of the advantages provided by MEC to tackle the challenges. Afterwards, it presents an evaluation of the resulting system, and discusses the implications of the results.

To summarise, we make three primary contributions in this thesis: (1) we find out that it is possible to augment HoPS and improve its response time by a factor of four by offloading the code processing; (2) we can improve the overall accuracy of HoPS by leveraging additional processing power at the MEC; (3) we observe that improved network conditions can lead to reduced response time, nevertheless, the difference becomes insignificant compared with the heavy processing required.

Abstract [sv]

Utvecklingen av mobiltelefoner har skett på en rusande takt. Dagens smartphones har mer processorkraft än vad stationära datorer hade för tio år sen. Samtidigt så har även datorernas processorer blivit mycket starkare. Därmed så finns det fortfarande klyftor mellan mobil plattform och datorer och servrar. Mobile Cloud Computing (MCC) används idag som en hävstång för de olika plattformernas processorkraft. Den uppnår detta genom att förbättra smartphonens processorkraft och datorminne med hjälp från datormolnet. På sistånde så har Mobile Edge Computing (MEC) gjort så att förmånerna med MCC är ett steg ifrån slutanvändaren. Dessutom så finns det andra fördelar med MEC, till exempel tillgång till nätverkssammanhangsinformation, reducerad latens, och platsmedvetenhet.

Denna tes utforskar de praktiska fördelarna med MEC genom att använda tillämpningsprogrammet Human-Centric Positioning System (HoPS). HoPS är ett system som försöker att hitta platsen där användaren befinner sig på genom att använda sammanhängande information samt information från bilder med vägvisare. Tesen presenterar även de hinder som kan uppstå när HoPS implementeras i verkligheten, och använder förmåner från MEC för att hitta lösningar till eventuella hinder. Sedan så utvärderar och diskuterar tesen det resulterande systemet.

För att sammanfatta så består tesen av tre huvuddelar: (1) vi tar reda på att det är möjligt att förbättra HoPS och minska svarstiden med en fjärdedel genom att avlasta kodsprocessen; (2) vi tar reda på att man kan generellt förbättra HoPS noggrannhet genom att använda den utökade processorkraften från MEC; (3) vi ser att förbättrade nätverksförutsättningar kan leda till minskad svarstid, dock så är skillnaden försumbar jämfört med hur mycket bearbetning av information som krävs.

Place, publisher, year, edition, pages
2015. , 59 p.
Series
TRITA-ICT-EX, 2015:205
Keyword [en]
mobile cloud, mobile-edge computing, image recognition, edge-cloud
National Category
Computer and Information Science
Identifiers
URN: urn:nbn:se:kth:diva-186712OAI: oai:DiVA.org:kth-186712DiVA: diva2:927836
Educational program
Master of Science -Security and Mobile Computing
Examiners
Available from: 2016-05-13 Created: 2016-05-13 Last updated: 2016-05-13Bibliographically approved

Open Access in DiVA

fulltext(4608 kB)208 downloads
File information
File name FULLTEXT01.pdfFile size 4608 kBChecksum SHA-512
0d20b87d7c6b234ca68fb42a49c6a9c46f70d4e3755b043cabef5e1aa022bb86a96ca5583bd77799a20a4ea058fd4c17c4c9f73cc8b49b486585ab4fae71f922
Type fulltextMimetype application/pdf

By organisation
School of Information and Communication Technology (ICT)
Computer and Information Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 208 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 140 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf