Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Ideal compressive strength of fcc Co, Ni, and Ni-rich alloys along the (001) direction: A first-principles study
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering. School of Metallurgy and Materials, University of Birmingham, United Kingdom. (Enheten strukturer)
2016 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 93, no 14, 144106Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

We perform density functional theory based first-principles calculations to identify promising alloying elements (X) capable of enhancing the compressive uniaxial theoretical (ideal) strength of the fcc Ni-matrix along the 001 direction. The alloying element belongs to a wide range of 3d,4d, and 5d series with nominal composition of 6.25 at. %. Additionally, a full elastic study is carried to investigate the ideal strength of fcc Ni and fcc Co. Our results indicate that the most desirable alloying elements are those with half d-band filling, namely, Os, Ir, Re, and Ru.

Place, publisher, year, edition, pages
American Physical Society , 2016. Vol. 93, no 14, 144106
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-187084DOI: 10.1103/PhysRevB.93.144106Scopus ID: 2-s2.0-84963775538OAI: oai:DiVA.org:kth-187084DiVA: diva2:929003
Note

QC 20160517

Available from: 2016-05-17 Created: 2016-05-17 Last updated: 2016-05-17Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Ruban, Andrei V.
By organisation
Materials Science and Engineering
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 10 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf