Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Optically Transparent Wood from a Nanoporous Cellulosic Template: Combining Functional and Structural Performance
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0002-1591-5815
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0002-9663-7705
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.ORCID iD: 0000-0002-3368-9786
Show others and affiliations
2016 (English)In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 17, no 4, p. 1358-1364Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

Optically transparent wood (TW) with transmittance as high as 85% and haze of 71% was obtained using a delignified nanoporous wood template. The template was prepared by removing the light-absorbing lignin component, creating nanoporosity in the wood cell wall. Transparent wood was prepared by successful impregnation of lumen and the nanoscale cellulose fiber network in the cell wall with refractive-index-matched prepolymerized methyl methacrylate (MMA). During the process, the hierarchical wood structure was preserved. Optical properties of TW are tunable by changing the cellulose volume fraction. The synergy between wood and PMMA was observed for mechanical properties. Lightweight and strong transparent wood is a potential candidate for lightweight low-cost, light-transmitting buildings and transparent solar cell windows.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2016. Vol. 17, no 4, p. 1358-1364
Keywords [en]
Solar-Cells, Nanofiber Paper, Scattering, Efficient, Fibers, Film
National Category
Polymer Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-187074DOI: 10.1021/acs.biomac.6b00145ISI: 000374076900013PubMedID: 26942562Scopus ID: 2-s2.0-84964600674OAI: oai:DiVA.org:kth-187074DiVA, id: diva2:929203
Funder
Knut and Alice Wallenberg Foundation
Note

QC 20160518

Available from: 2016-05-18 Created: 2016-05-17 Last updated: 2018-02-21Bibliographically approved
In thesis
1. Wood Nanotechnologies for Transparency, Fire Retardancy and Liquid Separation
Open this publication in new window or tab >>Wood Nanotechnologies for Transparency, Fire Retardancy and Liquid Separation
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis, wood nanotechnologies for transparent, fire-retardant and hydrophobic/lipophilic wood have been developed. There are two main parts; wood template preparation/processing concepts and materials design using these templates.

In the wood template processing part, highly porous nanostructured wood templates are prepared. Relationships between processes and material structures are studied. Three chemical treatment methods are used. Lignin and/or chromophores are removed from cell wall, so that nanoscale pores are formed in the cell wall. For preparation of transparent wood, a lignin-retaining method improves physical properties of the template. The pore structures are characterized by scanning electron microscopy and gas adsorption measurement of specific surface area. The compositions of the templates are characterized. Compared with native wood, these templates have nanoscale porosity which provides opportunity for new types of wood modification.

In the materials design part, wood nanotechnologies are used for transparent wood as well as for hydrophobic/lipophilic and fire-retardant wood. Two main strategies are used: i) nanoparticles are embedded inside the cell wall; ii) polymers are impregnated in lumen space, and sometimes also inside the cell wall. The transparent wood is prepared by MMA monomer/oligomer impregnation of lumen space. MMA has similar refractive index to the delignified template, so that scattering is reduced and transparent wood with favorable optical and mechanical properties is obtained. The structure and functional properties are studied. Laminated transparent plywood is designed to modify mechanical properties. Transparent wood and transparent plywood are demonstrated in applications combining loading-bearing properties with optical performance such as luminescent properties.

The highly porous wood template cell walls are also impregnated with colloidal montmorillonite clay or epoxy/amine solutions to modify the cell wall and form nanostructured biocomposites. The structure and properties of the two materials are investigated; wood/clay hybrids for flame-retardancy and wood/epoxy biocomposites for oil/water separation.

Place, publisher, year, edition, pages
Stockholm: Royal Institute of Technology, 2018. p. 77
Series
TRITA-CBH-FOU ; 2018:1
National Category
Engineering and Technology
Research subject
Materials Science and Engineering; Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-223441 (URN)978-91-7729-671-3 (ISBN)
Public defence
2018-03-07, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20180221

Available from: 2018-02-21 Created: 2018-02-21 Last updated: 2018-05-31Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records BETA

Li, YuanyuanYu, ShunYan, MinBerglund, Lars

Search in DiVA

By author/editor
Li, YuanyuanFu, QiliangYu, ShunYan, MinBerglund, Lars
By organisation
Fibre and Polymer TechnologyWallenberg Wood Science CenterOptics and Photonics, OFO
In the same journal
Biomacromolecules
Polymer Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 1568 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf