Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The protective effect of a helmet in three bicycle accidents: A finite element study
KTH, School of Technology and Health (STH), Medical Engineering, Neuronic Engineering.ORCID iD: 0000-0002-0980-4051
KTH, School of Technology and Health (STH), Medical Engineering, Neuronic Engineering.
KTH, School of Technology and Health (STH), Medical Engineering, Neuronic Engineering.ORCID iD: 0000-0003-0125-0784
2016 (English)In: Accident Analysis and Prevention, ISSN 0001-4575, E-ISSN 1879-2057, Vol. 91, 135-143 p.Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

There is some controversy regarding the effectiveness of helmets in preventing head injuries among cyclists. Epidemiological, experimental and computer simulation studies have suggested that helmets do indeed have a protective effect, whereas other studies based on epidemiological data have argued that there is no evidence that the helmet protects the brain. The objective of this study was to evaluate the protective effect of a helmet in single bicycle accident reconstructions using detailed finite element simulations. Strain in the brain tissue, which is associated with brain injuries, was reduced by up to 43% for the accident cases studied when a helmet was included. This resulted in a reduction of the risk of concussion of up to 54%. The stress to the skull bone went from fracture level of 80 MPa down to 13-16 MPa when a helmet was included and the skull fracture risk was reduced by up to 98% based on linear acceleration. Even with a 10% increased riding velocity for the helmeted impacts, to take into account possible increased risk taking, the risk of concussion was still reduced by up to 46% when compared with the unhelmeted impacts with original velocity. The results of this study show that the brain injury risk and risk of skull fracture could have been reduced in these three cases if a helmet had been worn.

Place, publisher, year, edition, pages
Elsevier, 2016. Vol. 91, 135-143 p.
Keyword [en]
Accident reconstruction, Bicycle, Finite element analysis, Head injuries, Helmet, Injury prevention
National Category
Health Sciences
Identifiers
URN: urn:nbn:se:kth:diva-186933DOI: 10.1016/j.aap.2016.02.025ISI: 000375162900015Scopus ID: 2-s2.0-84960439409OAI: oai:DiVA.org:kth-186933DiVA: diva2:929345
Note

QC 20160518

Available from: 2016-05-18 Created: 2016-05-16 Last updated: 2016-05-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Fahlstedt, MadelenHalldin, PeterKleiven, Svein
By organisation
Neuronic Engineering
In the same journal
Accident Analysis and Prevention
Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 52 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf