Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Method performance difference of sentiment analysis on social media databases: Sentiment classification in social media
KTH, School of Computer Science and Communication (CSC).
KTH, School of Computer Science and Communication (CSC).
2016 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
Skillnad i prestanda för sentimentanalysmetoder på data från sociala medier : Sentimentklassifikation i sociala medier (Swedish)
Abstract [en]

As the amount of available data have exploded with the in- crease in use of social media the interest of doing sentiment anlysis have increased. However as the source and nature of the data have changed it is possible that the known meth- ods will not perform as before. The purpose of this paper is to examine if such a di erence exist and if the methods can be improved through preprocessing the data. The results show that there is a di erence and that on this new type of data a lexicon approach may be a better choice than a machine learning based one. Preprocessing the data give some but no large improvements. 

Abstract [sv]

Den explosion av tillgänglig data i och med den ökade an- vändningen av sociala medier har ökat intresset för att göra sentimentsanalys. Men eftersom källan och innehållet för den data som analyseras har förändrats är det möjligt att de metoder som används kommer att prestera annorlunda. Syftet med denna studie är att undersöka om en sådan skill- nad finns och om metodernas trä säkerhet kan ökas genom att förarbeta data. Resultatet visar att det finns en skillnad och att en lexikal analys kan vara ett bättre tillvägagångs- sätt än en metod baserad på maskininlärning. Att förarbeta data visar viss men inte i sammanhanget stor förbättring av resultatet. 

Place, publisher, year, edition, pages
2016.
National Category
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-187259OAI: oai:DiVA.org:kth-187259DiVA: diva2:929493
Examiners
Available from: 2016-05-18 Created: 2016-05-18 Last updated: 2016-05-18Bibliographically approved

Open Access in DiVA

fulltext(1053 kB)236 downloads
File information
File name FULLTEXT01.pdfFile size 1053 kBChecksum SHA-512
d1ebfbdb42145a628b93cdae70b09be39bb27c2d7cb754f8602ccd3ba4c86272190e9f8656ef75b43c78ec824019bf3832a872ac3b82a75670360f42e4af36cc
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Johansson, HenrikLilja, Anton
By organisation
School of Computer Science and Communication (CSC)
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 236 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 957 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf