Change search
ReferencesLink to record
Permanent link

Direct link
Soil compaction by vibratory roller with variable frequency
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.ORCID iD: 0000-0002-7361-0729
Dynapac Compaction Equipment AB.
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.ORCID iD: 0000-0001-9615-4861
2016 (English)In: Geotechnique, ISSN 0016-8505, E-ISSN 1751-7656Article in journal (Refereed) Epub ahead of print
Abstract [en]

Full-scale tests were conducted to study the influence of the operating frequency of a vibratory roller on the compaction of crushed gravel in a controlled environment. Tests were performed at both fixed and variable frequencies. The average densification of the soil was represented by settlement of the ground surface, and depth-dependent density variation before and after compaction was determined by horizontal nuclear density gauge measurements. The resonant frequency was approximately 17 Hz and frequencies in the range 15–35 Hz were tested. The optimum compaction frequency was determined to be around 18 Hz; that is, slightly above resonance, as compared with the standard operating frequency of the roller, 31 Hz. Lower compaction frequency significantly reduces the required engine power and thus fuel consumption and environmental impact, while increasing the lifespan of the roller. Furthermore, the soil closest to the ground surface is loosened at high frequency. This can be avoided with a lower compaction frequency and the need for subsequent static passes can thereby possibly be eliminated.

Place, publisher, year, edition, pages
National Category
Geotechnical Engineering
URN: urn:nbn:se:kth:diva-187310DOI: 10.1680/geot./16-P-051OAI: diva2:929641

QC 20160614

Available from: 2016-05-19 Created: 2016-05-19 Last updated: 2016-09-28Bibliographically approved
In thesis
1. Frequency Optimization of Vibratory Rollers and Plates for Compaction of Granular Soil
Open this publication in new window or tab >>Frequency Optimization of Vibratory Rollers and Plates for Compaction of Granular Soil
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Vibratory rollers are commonly used for compaction of embankments and landfills. This task is time consuming and constitutes a significant part of most large construction and infrastructure projects. By improving the compaction efficiency, the construction industry would reduce costs and environmental impact.

This research project studies the influence of the vibration frequency of the drum, which is normally a fixed roller property, and whether resonance can be utilized to improve the compaction efficiency. The influence of frequency on roller compaction has not before been studied but the concept of resonance compaction has previously been applied successfully in deep compaction of fills and natural deposits.

In order to examine the influence of vibration frequency on the compaction of granular soil, small-scale compaction tests of sand were conducted under varying conditions with a vertically oscillating plate. Subsequently, full-scale tests were conducted using a vibratory soil compaction roller and a test bed of crushed gravel. The results showed that resonance can be utilized in soil compaction by vibratory rollers and plates and that the optimum compaction frequency from an energy perspective is at, or slightly above, the coupled compactor-soil resonant frequency. Since rollers operate far above resonance, the compaction frequency can be significantly reduced, resulting in a considerable reduction in fuel consumption, environmental impact and machine wear.

The thesis also presents an iterative equivalent-linear method to calculate the frequency response of a vibrating foundation, such as a compacting plate or the drum of a roller. The method seems promising for predicting the resonant frequency of the roller-soil system and can be used to determine the optimum compaction frequency without site- and roller-specific measurements.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2016. 40 p.
TRITA-JOB PHD, ISSN 1650-9501 ; 1022
compaction, vibratory roller, frequency, resonance, vibration, sand, gravel, soil dynamics
National Category
Geotechnical Engineering
Research subject
Civil and Architectural Engineering
urn:nbn:se:kth:diva-187352 (URN)978-91-7729-042-1 (ISBN)
Public defence
2016-08-26, F3, Lindstedtsvägen 26, Stockholm, 13:00

QC 20160613

Available from: 2016-06-13 Created: 2016-05-20 Last updated: 2016-06-13Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPublished version

Search in DiVA

By author/editor
Wersäll, CarlLarsson, Stefan
By organisation
Soil and Rock Mechanics
In the same journal
Geotechnical Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 51 hits
ReferencesLink to record
Permanent link

Direct link