Change search
ReferencesLink to record
Permanent link

Direct link
Modal instability of the flow in a toroidal pipe
KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.ORCID iD: 0000-0003-3211-4347
KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.ORCID iD: 0000-0001-9627-5903
KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0002-1663-3553
2016 (English)In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 792, 894-909 p.Article in journal (Refereed) PublishedText
Abstract [en]

The modal instability encountered by the incompressible flow inside a toroidal pipe is studied, for the first time, by means of linear stability analysis and direct numerical simulation (DNS). In addition to the unquestionable aesthetic appeal, the torus represents the smallest departure from the canonical straight pipe flow, at least for low curvatures. The flow is governed by only two parameters: the Reynolds number (Formula presented.) and the curvature of the torus (Formula presented.), i.e. the ratio between pipe radius and torus radius. The absence of additional features, such as torsion in the case of a helical pipe, allows us to isolate the effect that the curvature has on the onset of the instability. Results show that the flow is linearly unstable for all curvatures investigated between 0.002 and unity, and undergoes a Hopf bifurcation at (Formula presented.) of about 4000. The bifurcation is followed by the onset of a periodic regime, characterised by travelling waves with wavelength (Formula presented.) pipe diameters. The neutral curve associated with the instability is traced in parameter space by means of a novel continuation algorithm. Tracking the bifurcation provides a complete description of the modal onset of instability as a function of the two governing parameters, and allows a precise calculation of the critical values of (Formula presented.) and (Formula presented.). Several different modes are found, with differing properties and eigenfunction shapes. Some eigenmodes are observed to belong to groups with a set of common characteristics, deemed ‘families’, while others appear as ‘isolated’. Comparison with nonlinear DNS shows excellent agreement, confirming every aspect of the linear analysis, its accuracy, and proving its significance for the nonlinear flow. Experimental data from the literature are also shown to be in considerable agreement with the present results.

Place, publisher, year, edition, pages
Cambridge University Press, 2016. Vol. 792, 894-909 p.
Keyword [en]
bifurcation, instability, nonlinear dynamical systems
National Category
Fluid Mechanics and Acoustics
Identifiers
URN: urn:nbn:se:kth:diva-187267DOI: 10.1017/jfm.2016.104ISI: 000379218400003ScopusID: 2-s2.0-84960155237OAI: oai:DiVA.org:kth-187267DiVA: diva2:929738
Note

QC 20160519

Available from: 2016-05-19 Created: 2016-05-19 Last updated: 2016-08-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Canton, JacopoSchlatter, PhilippÖrlü, Ramis
By organisation
MechanicsLinné Flow Center, FLOWSeRC - Swedish e-Science Research Centre
In the same journal
Journal of Fluid Mechanics
Fluid Mechanics and Acoustics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 30 hits
ReferencesLink to record
Permanent link

Direct link