CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt170",{id:"formSmash:upper:j_idt170",widgetVar:"widget_formSmash_upper_j_idt170",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt172_j_idt174",{id:"formSmash:upper:j_idt172:j_idt174",widgetVar:"widget_formSmash_upper_j_idt172_j_idt174",target:"formSmash:upper:j_idt172:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

On probability measures arising from lattice points on circlesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2016 (English)In: Mathematische Annalen, ISSN 0025-5831, E-ISSN 1432-1807, p. 1-42Article in journal (Refereed) Published
##### Resource type

Text
##### Abstract [en]

##### Place, publisher, year, edition, pages

2016. p. 1-42
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-186995DOI: 10.1007/s00208-016-1411-4ISI: 000398175700005Scopus ID: 2-s2.0-84964290788OAI: oai:DiVA.org:kth-186995DiVA, id: diva2:929911
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt805",{id:"formSmash:j_idt805",widgetVar:"widget_formSmash_j_idt805",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt816",{id:"formSmash:j_idt816",widgetVar:"widget_formSmash_j_idt816",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt828",{id:"formSmash:j_idt828",widgetVar:"widget_formSmash_j_idt828",multiple:true});
##### Note

A circle, centered at the origin and with radius chosen so that it has non-empty intersection with the integer lattice (Formula presented.), gives rise to a probability measure on the unit circle in a natural way. Such measures, and their weak limits, are said to be attainable from lattice points on circles. We investigate the set of attainable measures and show that it contains all extreme points, in the sense of convex geometry, of the set of all probability measures that are invariant under some natural symmetries. Further, the set of attainable measures is closed under convolution, yet there exist symmetric probability measures that are not attainable. To show this, we study the geometry of projections onto a finite number of Fourier coefficients and find that the set of attainable measures has many singularities with a “fractal” structure. This complicated structure in some sense arises from prime powers—singularities do not occur for circles of radius (Formula presented.) if n is square free.

QC 20160520

Available from: 2016-05-20 Created: 2016-05-16 Last updated: 2017-04-28Bibliographically approved
doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1975",{id:"formSmash:j_idt1975",widgetVar:"widget_formSmash_j_idt1975",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt2028",{id:"formSmash:lower:j_idt2028",widgetVar:"widget_formSmash_lower_j_idt2028",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt2029_j_idt2031",{id:"formSmash:lower:j_idt2029:j_idt2031",widgetVar:"widget_formSmash_lower_j_idt2029_j_idt2031",target:"formSmash:lower:j_idt2029:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});