Change search
ReferencesLink to record
Permanent link

Direct link
Analysis of system improvements in solar thermal and air source heat pump combisystems
KTH, School of Industrial Engineering and Management (ITM), Energy Technology. Dalarna University College, Sweden.
Show others and affiliations
2016 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 173, 606-623 p.Article in journal (Refereed) PublishedText
Abstract [en]

A solar thermal and heat pump combisystem is one of many system alternatives on the market for supplying domestic hot water (DHW) and space heating (SH) in dwellings. In this study a reference solar thermal and air source heat pump combisystem was defined and modelled based on products available on the market. Based on the results of an extensive literature survey, several system variations were investigated to show the influence of heat pump cycle, thermal storage and system integration on the use of electricity for two houses in the climates of Zurich and Carcassonne. A singular economic cash flow analysis was carried out and the "additional investment limit" of each system variation was determined for a range of economic boundary conditions. This is the maximum extra investment cost for the system variant compared to the reference system that will give a break even result for a 10 year period. The results show that variations in electricity price affects the additional investment limit far more than the other economic parameters. Several of the variants show potential for achieving a cost benefit, but the potential varies a lot depending on load and climate boundary conditions. For all variants, the biggest difference in electricity savings was found for Zurich rather than in Carcassonne, which is explained by the larger heating load. However, in three cases the largest savings were for the SFH45 house despite the fact that the annual electricity use of the system is much lower than that for the SFH100 house, 3581 kW h/year compared to 8340 kW h/year. This was attributed to the fact that, in these cases, the operating level of the space heating circuit played a significant role, the SFH45 house being supplied with a 35/30 °C heating system while the SFH100 was supplied with a 55/45 °C heating system.

Place, publisher, year, edition, pages
Elsevier, 2016. Vol. 173, 606-623 p.
Keyword [en]
Heat pump cycle, Hydraulics, Solar combisystem, Thermal storage, Boundary conditions, Commerce, Cost effectiveness, Costs, Heat pump systems, Heat storage, Heating, Heating equipment, Houses, Investments, Pumps, Solar heating, Space heating, Thermal cycling, Cash flow analysis, Economic parameters, Electricity prices, Electricity saving, Solar combisystems, System improvements, Air source heat pumps
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:kth:diva-186915DOI: 10.1016/j.apenergy.2016.04.048ISI: 000377235200050ScopusID: 2-s2.0-84963784434OAI: oai:DiVA.org:kth-186915DiVA: diva2:930210
Note

QC 20160523

Available from: 2016-05-23 Created: 2016-05-16 Last updated: 2016-07-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Poppi, Stefano
By organisation
Energy Technology
In the same journal
Applied Energy
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 4 hits
ReferencesLink to record
Permanent link

Direct link