Change search
ReferencesLink to record
Permanent link

Direct link
Isoconversional analysis for the prediction of mass-loss rates during pyrolysis of biomass
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Energy Processes.ORCID iD: 0000-0002-2068-357X
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Biomass is the only renewable carbon source that can compete with fossil energy sources in terms of production of materials, chemicals and fuels. Biomass can be transformed into charcoal, liquid and gas through pyrolysis, i.e. pure thermal decomposition. By changing the pyrolysis conditions either solid, liquid or gaseous fractions can become the main product and pyrolysis is thus a very versatile process. Pyrolysis is also the first step in combustion and gasification, two important thermal processes in our society. The importance of biomass pyrolysis has led to extensive research in this area but due to the complexity of the process there is still no general understanding of how to describe biomass pyrolysis, which is essential in order to optimize thermal processes. The research presented in this thesis thus aims at finding a simple yet accurate way to model the decomposition rate of biomass during pyrolysis.

Thermogravimetric analysis, a well known method that is simple to use, was chosen to collect the experimental data used for kinetic evaluation. The reaction kinetics were derived using two different model-free, isoconversional methods, i.e. the non-linear form of the Friedman method and the incremental, integral method ofVyazovkin. By using these two methods and experimental data, complete reactionrate expressions could be derived for commercial cellulose, Norway spruce and seven different samples originating from kraft cooking, the most common process to produce pulp for the paper industry. The derivation of model-free rate expressions have never been performed before for these materials and since the rate expressions are model-free, no assumptions or knowledge about the pyrolysis reactions were required. This is a great advantage compared to the commonly used model-fitting methods that rely on information about these aspects. All therate expressions were successful in predicting mass-loss rates at extrapolated pyrolysis conditions. This is a clear indication of the soundness of the methodologypresented in this thesis.

Abstract [sv]

Biomassa är den enda förnybara kolkällan som kan konkurrera med fossila energikällor när det gäller produktion av material, kemikalier och bränslen. Biomassakan omvandlas till biokol, bioolja och gas med hjälp av pyrolys, dvs termisk nedbrytning. Genom att variera de processförhållanden som råder under pyrolysen kan man få antingen fast, flytande eller gasfasiga ämnen som huvudprodukt, något som gör pyrolys väldigt flexibelt. Utöver detta är pyrolys även betydelsefull vid förbränning och förgasning, två viktiga processer i dagens samhälle. Vikten av biomassapyrolys har resulterat i omfattande forskning inom området men pga biomassas komplexa natur råder det ännu ingen enighet gällande hur biomassapyrolys bör modelleras. Detta försvårar utveckling och optimering av termiska processer matade med biomassa. Forskningen som presenteras i denna avhandling fokuserar således på att finna en enkel men noggrann metod för att beskriva hastigheten med vilken biomassa bryts ned under pyrolys.

Termogravimetrisk analys, en vanligt förekommande metod som är enkel att använda, valdes för att samla in experimentell data som kan användas för att undersöka hastigheten för termisk nedbrytning, dvs kinetiken. Två olika metoder som på engelska går under benämningen “model-free” och “isoconversional” har använts, nämligen den icke-linjära formen av Friedmans metod och den stegvisa, integrala metoden som utvecklats av Vyazovkin. Genom att använda dessa två metoder och experimentell data kunde kompletta reaktionshastighetsuttryck tas fram för kommersiell cellulosa, gran och sju olika material framställda genom sulfatprocessen, den idag vanligast förekommande pappersmassaprocessen. Pyrolyskinetiken för dessa material har aldrig tidigare analyserats med dessa två metoder och fördelarna med metoderna gjorde det möjligt att bestämma hastighetsuttryck utan någon kunskap om de pågående reaktionerna. Detta är en viktig fördel jämfört med andra metoder som är beroende av sådan information. Alla framtagna reaktionshatighetsuttryck kunde användas för att framgångsrikt förutsäga minskningen av massa vid extrapolerade pyrolysförhållanden. Detta är en tydlig indikation på att metoden använd i denna avhandling fungerar väl.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2016. , 88 p.
TRITA-CHE-Report, ISSN 1654-1081 ; 2016:23
Keyword [en]
pyrolysis, biomass, kinetics, cellulose, spruce, black-liquor, model-free, isoconversional, prediction
Keyword [sv]
pyrolys, biomassa, kinetik, cellulosa, gran, svartlut, model-free, isoconversional, förutsägelse
National Category
Chemical Engineering
Research subject
Chemical Engineering; Energy Technology
URN: urn:nbn:se:kth:diva-187469ISBN: 978-91-7595-997-9OAI: diva2:930440
Public defence
2016-06-10, F3, Lindstedtsvägen 26, Stockholm, 09:57 (English)

QC 20160524

Available from: 2016-05-24 Created: 2016-05-24 Last updated: 2016-05-24Bibliographically approved
List of papers
1. Model-free rate expression for thermal decomposition processes: The case of microcrystalline cellulose pyrolysis
Open this publication in new window or tab >>Model-free rate expression for thermal decomposition processes: The case of microcrystalline cellulose pyrolysis
Show others...
2015 (English)In: Fuel, ISSN 0016-2361, Vol. 143, 438-447 p.Article in journal (Refereed) Published
Abstract [en]

We explore the possibility to derive a completely model-free rate expression using isoconversional methods. The Friedman differential method (Friedman, 1964) and the incremental integral method by Vyazovkin (2001) were both extended to allow for an estimation of not only the apparent activation energy but also the effective kinetic prefactor, defined as the product of the pre-exponential factor and the conversion function. Analyzing experimental thermogravimetric data for the pyrolytic decomposition of microcrystalline cellulose, measured at six different heating rates and three different initial sample masses (1.5-10 mg), revealed the presence of secondary char forming reactions and thermal lag, both increasing with increased sample mass. Conditioning of the temperature function enables extraction of more reliable prefactors and we found that the derived kinetic parameters show weak dependence on initial sample mass. Finally, by successful modeling of quasi-isothermal experimental curves, we show that the discrete rate expression estimated from linear heating rate experiments enables modeling of the thermal decomposition rate without any assumptions regarding the chemical process present. These findings can facilitate the design and optimization of industrial isothermal biomass fed reactors.

Model-free, Isoconversional, Kinetics, Thermogravimetric analysis, Pyrolysis, Cellulose
National Category
Energy Engineering
urn:nbn:se:kth:diva-160361 (URN)10.1016/j.fuel.2014.11.079 (DOI)000347688700052 ()2-s2.0-84918767293 (ScopusID)
Swedish Energy Agency

QC 20150227

Available from: 2015-02-27 Created: 2015-02-19 Last updated: 2016-05-24Bibliographically approved
2. A single model-free rate expression describing both non-isothermal and isothermal pyrolysis of Norway Spruce
Open this publication in new window or tab >>A single model-free rate expression describing both non-isothermal and isothermal pyrolysis of Norway Spruce
2015 (English)In: Fuel, ISSN 0016-2361, E-ISSN 1873-7153, Vol. 161, 59-67 p.Article in journal (Refereed) Published
Abstract [en]

A strictly isoconversional rate expression has been derived for pyrolysis of biomass. This rate expression, derived from non-isothermal thermogravimetric experiments using heating rates 2-10 K/min, can successfully predict the conversion rates of experimental data at heating rates 1-100 K/min and quasiisothermal experiments at 539-650 K. The methodology used is based on an extension of the incremental integral method by Vyazovkin (2001). Being able to derive an intrinsic reaction rate expression from non-isothermal data, without any assumption regarding the chemical processes present, opens up for the possibility to model industrial pyrolysis reactors, with a variety of temperature profiles.

Place, publisher, year, edition, pages
[Samuelsson, Lina N.; Babler, Matthaus U.] KTH Royal Inst Technol, Dept Chem Engn & Technol, SE-10044 Stockholm, Sweden. [Moriana, Rosana] KTH Royal Inst Technol, Dept Fibre & Polymer Technol, SE-10044 Stockholm, Sweden.: , 2015
Model-free, Isoconversional, Pyrolysis, Biomass, Thermogravimetry, Kinetics
National Category
Energy Engineering Chemical Sciences
urn:nbn:se:kth:diva-176322 (URN)10.1016/j.fuel.2015.08.019 (DOI)000362304600008 ()2-s2.0-84940476206 (ScopusID)

QC 20151117

Available from: 2015-11-17 Created: 2015-11-03 Last updated: 2016-05-24Bibliographically approved

Open Access in DiVA

Thesis(2116 kB)126 downloads
File information
File name FULLTEXT01.pdfFile size 2116 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Norberg Samuelsson, Lina
By organisation
Energy Processes
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 126 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 280 hits
ReferencesLink to record
Permanent link

Direct link