Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Development of EMT Simulation Model to Use RMS Control Model
KTH, School of Electrical Engineering (EES).
2016 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Evolution is continuous and as a result, developments in semiconductors are endless. This led to the Voltage Source Converter (VSC) based High Voltage Direct Current (HVDC) converter termed as HVDC light. HVDC light is quite preferable because of its pros in the technology used as well as the application it is used for. For instance, the VSC technology allows independent control of the real and reactive power and has reduced short circuit current. HVDC light are used in applications such as wind power integration, offshore power supply, underground transmission and in enhancing connected AC networks. It is vital that the control system in HVDC ensures the stability of the system and the power flow between the AC and DC systems. This is done by determining the instant at which the IGBT’s are fired in the converterstations (at both rectifier and inverter). ABB has developed RMS (using sequence components and phasors) control system based on the actual control system in a fully graphical programming language tool known as Hidraw. This RMS control has been implemented in other simulation software such as Netomac, Power factory and PSS/E. the RMS control Model is named by ABB as Common Component. The thesis aims at implementing an RMS control Model in an EMT (Electro Magnetic Transient Tools) simulation, carried out at the department of High Voltage Direct Current at ABB, Ludvika. The RMS control Model is a developed power system control and protection model which uses a simplified representation of areal time control system. When implemented, the RMS control model results are then compared with the detailed control representation implemented in PSCAD. The thesis is a result of ABB’s innovative ideas in implementing the RMS control model called Common Component into various other simulation tools of different compatibility that enables the control system to be exercised and exploited to its fullest. It also gives the prospect in developing the control system to ensure the electrical system is more efficient. The control system implemented in the EMT tool will enable developing better EMT models. The Common Component is developed but has not been implemented in PSCAD. There has been no reference to such work being carried out. Hence no reference has been referred to specific to the main work. Currently the EMT tool uses a detailed representation that shares the same code as the actual control system, MACHTM (Modular Advanced Control for HVDC) [9] control system. The implementation of Common Component in PSCAD requires an interface between them to pass the necessary parameters between them. The Common Component is developed in C++ and FORTRAN while PSCAD uses FORTRAN and hence proper interface in C++ is developed. Thereafter the electrical model representing one HVDC station (rectifier) is modelled in PSCAD. Four electrical models are implemented, described and evaluated to achieve proper control in the electrical system. The electrical models are operated in STATCOM (Static synchronous compensator) mode, where either reactive power or AC Voltage Control can be used. The model is run in reactive power control mode and the system is studied along with the control system for the required control. Model 4 gives more accurate results compared with the other models. There is better reactive power control in monitoring the PCC (point of common Coupling) and converter bus of the HVDC system. Since the Common Component is a simplified representation of the MACH [9] control system, it can behanded over to third parties without IP concerns. A simplified representation also gives the advantage of reduced simulation time. The electrical model can be further extended for both the converter stations and assessed for other control modes such as real power, dc voltage control and ac voltage control. Also the model needs to be further investigated on its behavior when subjected to faults.

Abstract [sv]

Utveckling är kontinuerlig och det betyder att även utvecklingen av halvledare är oändlig. Det har lett till att en Voltage Source Converter (VSC) baserad High Voltage Direct Current (HVDC) omvandlare som kallas HVDC Light har skapats. HVDC light är att föredra på grund av dess fördelar i den teknik som används samt applikationerna den används för. Till exempel så tillåter VSC tekniken oberoende kontroll av den verkliga och reaktiva effekten och har minskat kortslutningsströmen. HVDC Light används i applikationer så som vindkraftintegration, offshore strömförsörjning, markkabelöverföring och för att förbättra anslutna växelströmsnät. 

 

Styrsystemet i HVDC säkerställer stabiliteten i systemet och kraftflödet mellan AC- och DC-system. Detta görs genom att bestämma det ögonblick då IGBT tänds i strömriktarstationerna (både likriktare och växelriktare). ABB har utvecklat ett RMS (med sekvenskomponenter och fasvektorer) styrsystem baserat på det faktiska styrsystemet i ett helt grafiskt programmeringsverktyg som kallas Hidraw. Denna RMS-kontroll har implementerats i andra simuleringsprogram såsom Netomac, Powerfactory och PSS/E. ABB kallar sin RMS-kontroll för Common Component.

 

Avhandlingen syftar till att implementera en RMS-styrsystemsmodell i en EMT (Electro Magnetic Transient Tools) simulering som utförs vid institutionen för högspänd likström vid ABB, Ludvika. RMS-styrsystemsmodellen är ett befintligt utvecklat styr- och skyddssystem som använder en förenklad representation av det verkliga styrsystemet. När det implementerats jämförs resultaten från RMS-modelen med detaljerade styrsystemsrepresentationer som genomförts i PSCAD. 

 

Avhandlingen är ett resultat av ABBs innovativa idéer att implementera Common Component i olika simuleringsverktyg, trots deras olikheter, vilket gör det möjligt att prova och utvärdera styrsystemet maximalt. Det ger också utvecklingspotential för effektiviteten i kraftnäten. Att implementera styrsystemet i ett EMT-verktyg ger även bättre kunskap om att utveckla bättre EMT modeller.

 

Common Component är redan utvecklad men har inte blivit implementerad i PSCAD. Det finns inga referenser till att något sådant arbete har utförts. Därför har inga sådana referenser tagits upp i rapporten. För närvarande så använder EMT verktyget en detaljerad styrsystemsrepresentation som delar samma kodbas som det verkliga styrsystemet, MACHTM (Modular Advanced Control for HVDC) [9].

 

Implemeteringen av Common Component i PSCAD kräver att gränssnitt mellan de båda kan överföra nödvändiga parametrar. Common Component är utvecklat i C++ och FORTRAN, PSCAD använder FORTRAN. För att kommunikationen mellan de två verktygen ska fungera har ett gränssnitt utvecklats i C++. Den elektriska modell som representerar en HVDC station (likriktaren) har tagits fram i PSCAD. Totalt har fyra olika elektriska modeller implementerats, beskrivits och utvärderats för att hitta en optimal representation.

 

Implemeteringen av Common Component i PSCAD kräver att gränssnitt mellan de båda kan överföra nödvändiga parametrar. Common Component är utvecklat i C++ och FORTRAN, PSCAD använder FORTRAN. För att kommunikationen mellan de två verktygen ska fungera har ett gränssnitt utvecklats i C++. Den elektriska modell som representerar en HVDC station (likriktaren) har tagits fram i PSCAD. Totalt har fyra olika elektriska modeller implementerats, beskrivits och utvärderats för att hitta en optimal representation.

Place, publisher, year, edition, pages
2016. , 48 p.
Series
EES Examensarbete / Master Thesis
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-187641OAI: oai:DiVA.org:kth-187641DiVA: diva2:930831
Examiners
Available from: 2016-05-25 Created: 2016-05-25 Last updated: 2016-05-25Bibliographically approved

Open Access in DiVA

fulltext(2703 kB)572 downloads
File information
File name FULLTEXT01.pdfFile size 2703 kBChecksum SHA-512
aa041cae5c44395c1b9da4756e1c46b719ad36e4a63893d6c3f8aee9c1f56819fbd90b83dc73424cd8af48f60bc2da90627d8199fa5d6708e3e4d1f17ca12d5a
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering (EES)
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 572 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 244 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf