Change search
ReferencesLink to record
Permanent link

Direct link
Decoupled Controllers for Mobile Manipulation with Aerial Robots: Design, Implementation and Test
KTH, School of Electrical Engineering (EES).
2016 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

This work considers an aerial robot system composed of an Unmanned Aerial Vehicle (UAV) and a rigid manipulator, to be employed in mobile manipulation tasks. The strategy adopted for accomplishing the aerial manipulation is a decomposition of the previous system in two decoupled subsystems: one concerning the center of mass of the aerial robot; and another concerning the manipulator's orientation. Two Lyapunov-based controllers are developed, using a back stepping procedure, for solving the trajectory tracking problems related to the two subsystems. In the controller design, three inputs are assumed available: a translational acceleration along a body direction of the UAV; an angular velocity vector of this body rotation; and, finally, a torque at the spherical, or revolute, joint connecting the UAV and the manipulator. The first two inputs are generated by the same controller in order to drive the center of mass on a desired trajectory; while a second controller drives, through the third input, the manipulator's orientation to track a desired orientation. Formal stability proofs are provided that guarantee asymptotic trajectory tracking. Finally, the proposed control strategy is experimentally tested and validated.

Place, publisher, year, edition, pages
2016. , 98 p.
EES Examensarbete / Master Thesis, TRITA-EE 2016:045
Keyword [en]
Mobile Manipulation, Aerial Robots, Quadrotor, Backstepping, Lyapunov-based Control.
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
URN: urn:nbn:se:kth:diva-187649OAI: diva2:930855
Available from: 2016-05-25 Created: 2016-05-25 Last updated: 2016-05-25Bibliographically approved

Open Access in DiVA

fulltext(16903 kB)94 downloads
File information
File name FULLTEXT01.pdfFile size 16903 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering (EES)
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 94 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 101 hits
ReferencesLink to record
Permanent link

Direct link