Change search
ReferencesLink to record
Permanent link

Direct link
Legged locomotion: Balance, control and tools - from equation to action
KTH, Superseded Departments, Machine Design.
2003 (English)Doctoral thesis, monograph (Other scientific)
Abstract [en]

This thesis is about control and balance stability of leggedlocomotion. It also presents a combination of tools that makesit easier to design controllers for large and complicated robotsystems. The thesis is divided into four parts.

The first part studies and analyzes how walking machines arecontrolled, examining the literature of over twenty machinesbriefly, and six machines in detail. The goal is to understandhow the controllers work on a level below task and pathplanning, but above actuator control. Analysis and comparisonis done in terms of: i) generation of trunk motion; ii)maintaining balance; iii) generation of leg sequence andsupport patterns; and iv) reflexes.

The next part describes WARP1, a four-legged walking robotplatform that has been builtwith the long term goal of walkingin rough terrain. First its modular structure (mechanics,electronics and control) is described, followed by someexperiments demonstrating basic performance. Finally themathematical modeling of the robot’s rigid body model isdescribed. This model is derived symbolically and is general,i.e. not restricted to WARP1. It is easily modified in case ofa different number of legs or joints.

During the work with WARP1, tools for model derivation,control design and control implementation have been combined,interfaced and augmented in order to better support design andanalysis. These tools and methods are described in the thirdpart. The tools used to be difficult to combine, especially fora large and complicated system with many signals and parameterssuch as WARP1. Now, models derived symbolically in one tool areeasy to use in another tool for control design, simulation andfinally implementation, as well as for visualization andevaluation—thus going from equation to action.

In the last part we go back to“equation”wherethese tools aid the study of balance stability when complianceis considered. It is shown that a legged robot in a“statically balanced”stance may actually beunstable. Furthermore, a criterion is derived that shows when aradially symmetric“statically balanced”stance on acompliant surface is stable. Similar analyses are performed fortwo controllers of legged robots, where it is the controllerthat cause the compliance.

Keywordslegged locomotion, control, balance, leggedmachines, legged robots, walking robots, walking machines,compliance, platform stability, symbolic modeling

Place, publisher, year, edition, pages
Stockholm: Maskinkonstruktion , 2003. , 266 p.
Trita-MMK, ISSN 1400-1179 ; 2003:19
Keyword [en]
legged locomotion, control, balance, legged machines, legged robots, walking robots, walking machines, compliance, platform stability
URN: urn:nbn:se:kth:diva-3510ISBN: OAI: diva2:9324
Public defence
NR 20140805Available from: 2003-05-09 Created: 2003-05-09Bibliographically approved

Open Access in DiVA

fulltext(2687 kB)3820 downloads
File information
File name FULLTEXT01.pdfFile size 2687 kBChecksum SHA-1
Type fulltextMimetype application/pdf

By organisation
Machine Design

Search outside of DiVA

GoogleGoogle Scholar
Total: 3821 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 1070 hits
ReferencesLink to record
Permanent link

Direct link