Change search
ReferencesLink to record
Permanent link

Direct link
Engineering a thermostable Halothermothrix orenii beta-glucosidase for improved galacto-oligosaccharide synthesis
KTH, School of Biotechnology (BIO), Industrial Biotechnology.
KTH, School of Biotechnology (BIO), Industrial Biotechnology.
Show others and affiliations
2016 (English)In: Applied Microbiology and Biotechnology, ISSN 0175-7598, E-ISSN 1432-0614, Vol. 100, no 8, 3533-3543 p.Article in journal (Refereed) PublishedText
Abstract [en]

Lactose is produced in large amounts as a by-product from the dairy industry. This inexpensive disaccharide can be converted to more useful value-added products such as galacto-oligosaccharides (GOSs) by transgalactosylation reactions with retaining beta-galactosidases (BGALs) being normally used for this purpose. Hydrolysis is always competing with the transglycosylation reaction, and hence, the yields of GOSs can be too low for industrial use. We have reported that a beta-glucosidase from Halothermothrix orenii (HoBGLA) shows promising characteristics for lactose conversion and GOS synthesis. Here, we engineered HoBGLA to investigate the possibility to further improve lactose conversion and GOS production. Five variants that targeted the glycone (-1) and aglycone (+1) subsites (N222F, N294T, F417S, F417Y, and Y296F) were designed and expressed. All variants show significantly impaired catalytic activity with cellobiose and lactose as substrates. Particularly, F417S is hydrolytically crippled with cellobiose as substrate with a 1000-fold decrease in apparent k(cat), but to a lesser extent affected when catalyzing hydrolysis of lactose (47-fold lower k(cat)). This large selective effect on cellobiose hydrolysis is manifested as a change in substrate selectivity from cellobiose to lactose. The least affected variant is F417Y, which retains the capacity to hydrolyze both cellobiose and lactose with the same relative substrate selectivity as the wild type, but with similar to 10-fold lower turnover numbers. Thin-layer chromatography results show that this effect is accompanied by synthesis of a particular GOS product in higher yields by Y296F and F417S compared with the other variants, whereas the variant F417Y produces a higher yield of total GOSs.

Place, publisher, year, edition, pages
Springer, 2016. Vol. 100, no 8, 3533-3543 p.
Keyword [en]
beta-Glucosidase, beta-Galactosidase, Halothermophile, Halothermothrix, Lactose conversion, Galacto-oligosaccharides, Transglycosylation mutants
National Category
Biocatalysis and Enzyme Technology
Identifiers
URN: urn:nbn:se:kth:diva-186635DOI: 10.1007/s00253-015-7118-8ISI: 000373744200014PubMedID: 26621798ScopusID: 2-s2.0-84948974980OAI: oai:DiVA.org:kth-186635DiVA: diva2:934096
Note

QC 20160808

Available from: 2016-06-08 Created: 2016-05-13 Last updated: 2016-06-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Hassan, NoorGandini, RosariaDivne, ChristinaTan, Tien Chye
By organisation
Industrial Biotechnology
In the same journal
Applied Microbiology and Biotechnology
Biocatalysis and Enzyme Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 8 hits
ReferencesLink to record
Permanent link

Direct link