Change search
ReferencesLink to record
Permanent link

Direct link
Machine-to-machine communications over FiWi enhanced LTE networks: A power-saving framework and end-to-end performance
Show others and affiliations
2016 (English)In: Journal of Lightwave Technology, ISSN 0733-8724, E-ISSN 1558-2213, Vol. 34, no 4, 1062-1071 p., 7360869Article in journal (Refereed) PublishedText
Abstract [en]

To cope with the unprecedented acceleration of machine-to-machine (M2M) services over cellular networks, this paper envisions a highly converged network architecture based on the integration of high-capacity and reliable Ethernet fiber-wireless (FiWi) access networks with flexible and cost-effective 4G long term evolution (LTE) technology to support M2M connectivity in an end-to-end fashion, i.e., from air interface to transport (backhaul) network. In such emerging architecture, energy efficiency must be addressed in a comprehensive way, in which both wireless front-end and optical backhaul segments are considered at the same time to maximize the battery life of battery-constrained M2M devices as well as reduce operational expenditures for network operators, while maintaining acceptable network performance. Toward this end, an end-to-end power-saving framework is introduced in this paper that devises a timeout driven discontinuous reception (DRX) mechanism for LTE-enabled M2M devices and a polling-based power-saving mechanism for optical network units (ONUs) to improve the overall energy efficiency. End-to-end performance in terms of energy saving and packet delay is analytically modeled based on a semi-Markov process for the front-end and an M/G/1 queue for the backhaul. The obtained results indicate that the device battery life is significantly prolonged by extending the DRX cycle, whereas the backhaul energy consumption is minimized by incorporating the ONU power-saving modes into the dynamic bandwidth allocation process of the optical backhaul.

Place, publisher, year, edition, pages
IEEE Press, 2016. Vol. 34, no 4, 1062-1071 p., 7360869
Keyword [en]
Discontinuous reception (DRX), energy efficiency, Fiber-Wireless (FiWi), M2M communications, ONU sleep, Automation, Cost effectiveness, Electric batteries, Energy conservation, Energy utilization, Frequency allocation, Long Term Evolution (LTE), Markov processes, Mobile telecommunication systems, Network architecture, Telecommunication networks, Discontinuous receptions, Dynamic bandwidth allocation, Fiberwireless (FiWi), Machine-to-machine communications, Operational expenditures, Overall energy efficiency, Wireless telecommunication systems
National Category
Communication Systems
Identifiers
URN: urn:nbn:se:kth:diva-188250DOI: 10.1109/JLT.2015.2510358ScopusID: 2-s2.0-84961918904OAI: oai:DiVA.org:kth-188250DiVA: diva2:935875
Note

QC 20160613

Available from: 2016-06-13 Created: 2016-06-09 Last updated: 2016-06-13Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Pham Van, Dung
In the same journal
Journal of Lightwave Technology
Communication Systems

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 4 hits
ReferencesLink to record
Permanent link

Direct link